Download Free Investigation Of Turbulent Lifted Jet Flame Stabilization Using Experimental Methods And Simulations Book in PDF and EPUB Free Download. You can read online Investigation Of Turbulent Lifted Jet Flame Stabilization Using Experimental Methods And Simulations and write the review.

An ever increasing demand for energy coupled with a need to mitigate climate change necessitates technology (and lifestyle) changes globally. An aspect of the needed change is a decrease in the amount of anthropogenically generated CO2 emitted to the atmosphere. The decrease needed cannot be expected to be achieved through only one source of change or technology, but rather a portfolio of solutions are needed. One possible technology is Carbon Capture and Storage (CCS), which is likely to play some role due to its combination of mature and promising emerging technologies, such as the burning of hydrogen in gas turbines created by pre-combustion CCS separation processes. Thus research on effective methods of burning turbulent hydrogen jet flames (mimicking gas turbine environments) are needed, both in terms of experimental investigation and model development. The challenge in burning (and modeling the burning of) hydrogen lies in its wide range of flammable conditions, its high diffusivity (often requiring a diluent such as nitrogen to produce a lifted turbulent jet flame), and its behavior under a wide range of pressures. In this work, numerical models are used to simulate the environment of a gas turbine combustion chamber. Concurrent experimental investigations are separately conducted using a vitiated coflow burner (which mimics the gas turbine environment) to guide the numerical work in this dissertation. A variety of models are used to simulate, and occasionally guide, the experiment. On the fundamental side, mixing and chemistry interactions motivated by a H2/N2 jet flame in a vitiated coflow are investigated using a 1-D numerical model for laminar flows and the Linear Eddy Model for turbulent flows. A radial profile of the jet in coflow can be modeled as fuel and oxidizer separated by an initial mixing width. The effects of species diffusion model, pressure, coflow composition, and turbulent mixing on the predicted autoignition delay times and mixture composition at ignition are considered. We find that in laminar simulations the differential diffusion model allows the mixture to autoignite sooner and at a fuel-richer mixture than the equal diffusion model. The effect of turbulence on autoignition is classified in two regimes, which are dependent on a reference laminar autoignition delay and turbulence time scale. For a turbulence timescale larger than the reference laminar autoignition time, turbulence has little influence on autoignition or the mixture at ignition. However, for a turbulence timescale smaller than the reference laminar timescale, the influence of turbulence on autoignition depends on the diffusion model. Differential diffusion simulations show an increase in autoignition delay time and a subsequent change in mixture composition at ignition with increasing turbulence. Equal diffusion simulations suggest the effect of increasing turbulence on autoignition delay time and the mixture fraction at ignition is minimal. More practically, the stabilizing mechanism of a lifted jet flame is thought to be controlled by either autoignition, flame propagation, or a combination of the two. Experimental data for a turbulent hydrogen diluted with nitrogen jet flame in a vitiated coflow at atmospheric pressure, demonstrates distinct stability regimes where the jet flame is either attached, lifted, lifted-unsteady, or blown out. A 1-D parabolic RANS model is used, where turbulence-chemistry interactions are modeled with the joint scalar-PDF approach, and mixing is modeled with the Linear Eddy Model. The model only accounts for autoignition as a flame stabilization mechanism. However, by comparing the local turbulent flame speed to the local turbulent mean velocity, maps of regions where the flame speed is greater than the flow speed are created, which allow an estimate of lift-off heights based on flame propagation. Model results for the attached, lifted, and lifted-unsteady regimes show that the correct trend is captured. Additionally, at lower coflow equivalence ratios flame propagation appears dominant, while at higher coflow equivalence ratios autoignition appears dominant.
Experimental measurements of the lift-off velocity and lift-off height, and numerical simulations were conducted on the liftoff and stabilization phenomena of laminar jet diffusion flames of inert-diluted C3H and CH4 fuels. Both non-reacting and reacting jets were investigated, including effects of multi-component diffusivities and heat release (buoyancy and gas expansion). The role of Schmidt number for non-reacting jets was investigated, with no conclusive Schmidt number criterion for liftoff previously known in similarity solutions. The cold-flow simulation for He-diluted CH4 fuel does not predict flame liftoff; however, adding heat release reaction leads to the prediction of liftoff, which is consistent with experimental observations. Including reaction was also found to improve liftoff height prediction for C3H flames, with the flame base location differing from that in the similarity solution--the intersection of the stoichiometric and iso-velocity contours is not necessary for flame stabilization (and thus lift-off). Possible mechanisms other than that proposed for similarity solution may better help to explain the stabilization and liftoff phenomena. The stretch rate at a wide range of isotherms near the base of the lifted tribrachial flame were also quantitatively plotted and analyzed.
This research aims to investigate the nonlinear dynamics of the non-reacting jets and non-premixed lifted jet flames. The goal is to understand better how the flow system dynamics change over time and identify the path toward unwanted conditions such as flashback, extinction, or blowout to limit combustors' dynamical failure. The existence of these undesirable conditions is bound to the fluid's history, meaning that initiated perturbation may persist in the system for time scales comparable to large-scale flow timescales. Hence, the notion is to utilize jet and jet flames as a study test case to work out how the flow evolves dynamically with the hope of understanding how to limit occurrences of the chaotic unwanted condition. Initially, planar particle image velocimetry has been used for the development of the methodologies. I have used planar data to investigate the nonlinear dynamics of non-reacting turbulent jets, with a low-to-moderate Reynolds number using the single-trajectory framework and ensemble framework. I have used Lyapunov exponents to calculate the spectra of scaling indices of the attractor. Then, I used Lagrangian Coherent Structures (LCSs), which are defined as manifolds that are locally Euclidean and invariant, to study the relationship between Lyapunov exponent changes with flow topological features. These LCSs behave as hypersurfaces with maximally repelling or attracting properties. These various methodologies were used to investigate flame-turbulence interaction in lifted jet flames. The Lagrangian framework is shown to be effective at revealing the kinematics associated with flame-turbulence interaction. The LCSs' time history represents how eddy structures interact with the flame and highlight their role in the dynamics of the lifted jet flames. Finally, I have investigated the flame and turbulence interaction using high-speed luminosity imaging and simultaneous three-dimensional particle image velocimetry. The three-dimensional Lagrangian structures provide us a more detailed flow-flame interaction. It is shown that the flow features associated with attracting LCSs can create a barrier attracting the flame that makes the flame move upstream. In contrast, the presence of repelling LCSs near stationary flames breaks the balance between the gas velocity and flame propagation speed, causing the flame to become non-stationary and move downstream. It was also found that the repelling LCSs induce negative curvature on the flame surface whereas pushing the flame toward the products. However, the attracting LCSs induce positive curvature on the flame surface and draws the flame toward the reactants
Several researchers have examined the concept of flame stability and there has been little agreement regarding the reasons governing this phenomenon. The experiments described within were devised to establish the dominating stabilization mechanism in lifted flames. Specifically, the flame base of lifted methane-jet diffusion flames were examined through the use of various combinations of synchronized laser-based techniques involving particle image velocimetry (PIV), planar laser-induced fluorescence (PLIF), and Rayleigh scattering. Results indicate the presence of a structure termed a flame. Results involving the gradient in the Rayleigh signal across the flame base, in addition to two-shot CH-PLIF interpretations support the leading-edge flame as a primary stabilization mechanism. The extent of premixing upstream of the flame base has been a major source of disagreement in the past. The simultaneous Rayleigh and CH-PLIF images indicate the base of the lifted flame lies in a region that is within the flammability limits of methane burning in air. Furthermore, the average velocity at the stabilization point is 1.18 m/s (as determined from the simultaneous CH-PLIF and PIV investigation); this value is comparable to three times the laminar burning velocity of methane (~ 3S), thereby supporting previous numerical triple flame simulations. Results from the joint two-shot CH-PLIF and PIV technique show that the flame base velocity is independent of the flow conditions when the flame is stationary during the time separation of the CH-PLIF pulses. Specifically, flames with Re flow conditions. Finally, regions of local extinction -- as indicated by openings in the CH profiles -- were examined. Results from four experiments (simultaneous CH-PLIF and PIV, simultaneous CH-PLIF and OH-PLIF, simultaneous CH-PLIF and Rayleigh scattering, and simultaneous two-shot CH-PLIF and PIV) provide complementary information regarding the role of large-scale fuel vortices in initiat.
The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.
Developing clean, sustainable energy systems is a pre-eminent issue of our time. Most projections indicate that combustion-based energy conversion systems will continue to be the predominant approach for the majority of our energy usage. Unsteady combustor issues present the key challenge associated with the development of clean, high-efficiency combustion systems such as those used for power generation, heating or propulsion applications. This comprehensive study is unique, treating the subject in a systematic manner. Although this book focuses on unsteady combusting flows, it places particular emphasis on the system dynamics that occur at the intersection of the combustion, fluid mechanics and acoustic disciplines. Individuals with a background in fluid mechanics and combustion will find this book to be an incomparable study that synthesises these fields into a coherent understanding of the intrinsically unsteady processes in combustors.