Download Free Investigation Of The Interactions Between Collagen Binding Integrins And Collagen Book in PDF and EPUB Free Download. You can read online Investigation Of The Interactions Between Collagen Binding Integrins And Collagen and write the review.

The integrin family is composed of 24 members and approximately ten years ago (2003) we published a book devoted to the nine I domain integrin subunits. In this second edition, I am pleased that most of the original authors have been able to contribute to the updated version. I domain containing integrins include collagen receptors and leukocyte receptors. In 2003 the knockout mouse phenotypes for all of the I domain integrins had not yet been published; they are now, and are summarized and discussed in this edition. Interestingly, a recent 10 integrin mutation in dogs has indicated that collagen-binding integrins in the musculoskeletal system might have much more severe phenotypes in larger animals/humans compared to the mild integrin phenotypes observed in collagen-binding integrin deficient mice. This finding is further discussed in the book. In the cancer field, the microenvironment is taking center stage, and here collagen receptors on fibroblasts are predicted to play important roles in paracrine signaling, in regulating tissue stiffness and matrix remodeling. New technologies, new mouse models in combination with analyses of I integrins in larger animals/humans are thus predicted to increase our knowledge about this group of receptors. With this in mind we look forward to another 10 years of research with I domain integrins.
Lung Epithelial Biology in the Pathogenesis of Pulmonary Disease provides a one-stop resource capturing developments in lung epithelial biology related to basic physiology, pathophysiology, and links to human disease. The book provides access to knowledge of molecular and cellular aspects of lung homeostasis and repair, including the molecular basis of lung epithelial intercellular communication and lung epithelial channels and transporters. Also included is coverage of lung epithelial biology as it relates to fluid balance, basic ion/fluid molecular processes, and human disease. Useful to physician and clinical scientists, the contents of this book compile the important and most current findings about the role of epithelial cells in lung disease. Medical and graduate students, postdoctoral and clinical fellows, as well as clinicians interested in the mechanistic basis for lung disease will benefit from the books examination of principles of lung epithelium functions in physiological condition. - Provides a single source of information on lung epithelial junctions and transporters - Discusses of the role of the epithelium in lung homeostasis and disease - Includes capsule summaries of main conclusions as well as highlights of future directions in the field - Covers the mechanistic basis for lung disease for a range of audiences
This detailed volume compiles state-of-the-art protocols that will serve as recipes for scientists researching collagen, an abundant protein with great importance to health and disease, as well as in applications like food, cosmetics, pharmaceuticals, cosmetic surgery, artificial skin, and glue. Beginning with a section on in vitro models for the characterization of collagen formation, the book continues by highlighting large-scale analysis of collagen with mass spectrometry in order to elucidate the proteomics, degradomics, interactomes, and cross-linking of collagen, high resolution imaging approaches for collagen by the use of scanning electron microscopy and multiphoton imaging, as well as the role of collagen during physiological and pathological conditions. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Collagen: Methods and Protocols is an ideal guide to high quality and repeatable protocols in this vital field of study.
This volume gives a comprehensive overview on the most relevant leukocyte and endothelial adhesion molecules. The chapters are written by leaders in the field and focus on the biology, structure, function, and regulation of adhesion molecules. Currently approved adhesion molecule-based therapies are reviewed and an outlook for future approaches is also provided. The book is of interest to clinicians and scientists from immunology, physiology, cancer research, rheumatology, allergology, infectious diseases, gastroenterology, pulmonology and cardiology.
This updated edition is a comprehensive treatise that spans the complete range of basic biochemistry of bone and cartilage components to the clinical evaluation of disease markers in bone and joint disorders. With contributions from over 75 international experts, Dynamics of Bone and Cartilage Metabolism, Second Edition, is indispensable reading for those involved in skeletal research as well as for rheumatologists, endocrinologists, clinical biochemists, and other clinical disciplines participating in the management of patients with bone and cartilage diseases. - Part I provides an up-to-date account of current knowledge of the structure, biosynthesis and molecular biology of the major tissue components - Part II covers the organizational structure and cellular metabolism of bone and cartilage - Part III deals with the utility of components specific to bone and cartilage as biomarkers of health and disease
Cell adhesion is essential for the organization of multicellular organisms. Indeed, various types of cell adhesion receptors, including cadherins and integrins, are present in animals ranging from nematodes and insects to vertebrates. In this book, we focus on the integrin family, which is shared among all metazoans, but has expanded considerably with vertebrate evolution. Since the cloning of the first integrin subunit, some twenty years ago, integrin biology has been—and still is—a topic of intense study. Integrin-mediated adhesion is a regulated process that, in turn, regulates the organization of the actin cytoskeleton. Moreover, it has become clear from in vitro analyses that integrin-mediated adhesion can affect virtually all aspects of cellular behavior—including polarity, motility, proliferation, survival, and differentiation. This book aims to provide an extensive overview of the current knowledge about the regulation of developmental processes as well as the maintenance of proper tissue function, by integrin-mediated adhesion. In addition, key aspects of integrin cell biology are discussed. Chapter 1 of this book is meant as an introduction in integrin biology and is followed by a more in-depth discussion of the roles that integrins play in extracellular matrix assembly, in cell migration, and in the regulation of intracellular signaling cascades (Chapters 2-4). Subsequently, Chapters 5 and 6 discuss what has been learned about the role of integrins and associated proteins in animal development from genetic analysis of two invertebrates— the flatworm, C. elegans and the fruit fly, D. melanogaster. The relatively limited number of genes encoding adhesion-related proteins and the relative ease and speed with which genetic experiments can be performed in these animals, have allowed researchers to study the basic principles of integrin biology in vivo. Finally, Chapters 7-14 discuss how integrin-mediated adhesion regulates the development and functionality of the different mammalian organ systems, based to a large extent on (conditional) gene knockout studies in mice and on studies in human patients.
The microcirculation is highly responsive to, and a vital participant in, the inflammatory response. All segments of the microvasculature (arterioles, capillaries, and venules) exhibit characteristic phenotypic changes during inflammation that appear to be directed toward enhancing the delivery of inflammatory cells to the injured/infected tissue, isolating the region from healthy tissue and the systemic circulation, and setting the stage for tissue repair and regeneration. The best characterized responses of the microcirculation to inflammation include impaired vasomotor function, reduced capillary perfusion, adhesion of leukocytes and platelets, activation of the coagulation cascade, and enhanced thrombosis, increased vascular permeability, and an increase in the rate of proliferation of blood and lymphatic vessels. A variety of cells that normally circulate in blood (leukocytes, platelets) or reside within the vessel wall (endothelial cells, pericytes) or in the perivascular space (mast cells, macrophages) are activated in response to inflammation. The activation products and chemical mediators released from these cells act through different well-characterized signaling pathways to induce the phenotypic changes in microvessel function that accompany inflammation. Drugs that target a specific microvascular response to inflammation, such as leukocyte-endothelial cell adhesion or angiogenesis, have shown promise in both the preclinical and clinical studies of inflammatory disease. Future research efforts in this area will likely identify new avenues for therapeutic intervention in inflammation. Table of Contents: Introduction / Historical Perspectives / Anatomical Considerations / Impaired Vasomotor Responses / Capillary Perfusion / Angiogenesis / Leukocyte-Endothelial Cell Adhesion / Platelet-Vessel Wall Interactions / Coagulation and Thrombosis / Endothelial Barrier Dysfunction / Epilogue / References
with contributions by numerous experts
Interdisciplinarity is more often invoked than practised. This is hardly surprising, considering the daunting vastness of modern biology. To reach a satisfactory understanding of a complex biological system, a wide spectrum of conceptual and experimental tools must be applied at different levels, from the molecular to the cellular, tissue and organismic. We believe the multifaceted regulatory interplay between integrin receptors and ion channels offers a rich and challenging field for researchers seeking broad biological perspectives. By mediating cell adhesion to the extracellular matrix, integrins regulate many developmental processes in the widest sense (from cell choice between differentiation and proliferation, to tissue remodeling and organogenesis). Rapidly growing evidence shows that frequent communication takes place between cell adhesion receptors and channel proteins. This may occur through formation of multiprotein membrane complexes that regulate ion fluxes as well as a variety of intracellular signaling pathways. In other cases, cross talk is more indirect and mediated by cellular messengers such as G proteins. These interactions are reciprocal, in that ion channel stimulation often controls integrin activation or expression. From a functional standpoint, studying the interplay between integrin receptors and ion channels clarifies how the extracellular matrix regulates processes as disparate as muscle excitability, synaptic plasticity and lymphocyte activation, just to mention a few. The derangement of these processes has many implications for pathogenesis processes, in particular for tumor invasiveness and some cardiovascular and neurologic diseases. This book provides a general introduction to the problems and methods of this blossoming field.