Download Free Investigation Of The Direct Heterogenous Electron Transfer Of Hemoglobin And Cytochrome P450 Enzymes And Bioanalytical Application Book in PDF and EPUB Free Download. You can read online Investigation Of The Direct Heterogenous Electron Transfer Of Hemoglobin And Cytochrome P450 Enzymes And Bioanalytical Application and write the review.

Cytochrome P450: Structure, Mechanism, and Biochemistry, third edition is a revision of a review that summarizes the current state of research in the field of drug metabolism. The emphasis is on structure, mechanism, biochemistry, and regulation. Coverage is interdisciplinary, ranging from bioinorganic chemistry of cytochrome P450 to its relevance in human medicine. Each chapter provides an in-depth review of a given topic, but concentrates on advances of the last 10 years.
This book, "Cytochromes P450: Drug Metabolism, Bioactivation and Biodiversity", presents five papers on human cytochrome P450 (CYP) and P450 reductase, three reviews on the role of CYPs in humans and their use as biomarkers, six papers on CYPs in microorganisms, and one study on CYP in insects. The first paper reports the in silico modeling of human CYP3A4 access channels. The second uses structural methods to explain the mechanism-based inactivation of CYP3A4 by mibefradil, 6,7-dihydroxy-bergamottin, and azamulin. The third article compares electron transfer in CYP2C9 and CYP2C19 using structural and biochemical methods, and the fourth uses kinetic methods to study electron transfer to CYP2C8 allelic mutants. The fifth article characterizes electron transfer between the reductase and CYP using in silico and in vitro methods, focusing on the conformations of the reductase. Then, two reviews describe clinical implications in cardiology and oncology and the role of fatty acid metabolism in cardiology and skin diseases. The second review is on the potential use of circulating extracellular vesicles as biomarkers. Five papers analyze the CYPomes of diverse microorganisms: the Bacillus genus, Mycobacteria, the fungi Tremellomycetes, Cyanobacteria, and Streptomyces. The sixth focuses on a specific Mycobacterium CYP, CYP128, and its importance in M. tuberculosis. The subject of the last paper is CYP in Sogatella furcifera, a plant pest, and its resistance to the insecticide sulfoxaflor.
Cytochrome P450s (CYPs) are a family of enzymes implicated in the metabolism of drugs in the body. Consequently, P450 reactions are of high interest to the pharmaceutical industry, where lead compounds in drug development are screened as potential substrates of CYPs. The P450 reaction involves electron transfer to an iron heme via NADPH and the electron transfer partner enzyme P450 reductase (CPR). By immobilizing CYPs on an electrode however, NADPH and CPR are potentially no longer needed and the immobilized CYP can act as a biosensor by accepting electrons directly from the electrode. Such a biosensor could be used as an initial screening tool for CYP reactivity of pharmaceuticals in development. In this study, the drug-metabolizing enzyme CYP 2C9 was immobilized to a self-assembled monolayer (SAM) on a gold electrode in three different orientations to investigate the effect that orientation has on the direct electrochemistry of CYP and to evaluate oriented attachment of CYP to an electrode as a biosensor design. Three attachment methods were investigated: random attachment via amine coupling to a carboxy-terminated SAM, oriented attachment via C-terminal His-tag coupling to a Ni-NTA-functionalized SAM, and oriented attachment via maleimide/thiol coupling to a maleimide-functionalized SAM. Three 2C9 mutants (R125C, R132C, and K432C) were developed with a single cysteine mutation at the binding site for CPR on the side of the enzyme closest to the heme; attachment of these mutants to a gold electrode via maleimide/thiol coupling would orient the enzyme such that electron transfer occurs on the electrode in the same orientation that it does in vivo with CPR. Therefore, we expected oriented attachment via maleimide/thiol coupling to produce the most electroactive CYP biosensor. Electrochemical analysis and surface characterization of the SAMs on gold electrodes confirmed that electron transfer occurs through the SAMs, and activity assays of the 2C9 electrodes confirmed that wild-type 2C9 and the single Cys mutants R125C, R132C, and K432C were immobilized to the gold electrode via all three attachment methods. Cyclic voltammetry of the 2C9 electrodes revealed however, that direct electron transfer to 2C9 was not possible for all three attachment methods. Similar redox processes were observed for both the 2C9 electrodes and no-enzyme electrodes modified only with SAMs, suggesting that the redox process observed on the 2C9 electrodes is related to the underlying SAM. Thus, we were unable to make any conclusions regarding the effectiveness of oriented attachment in creating a 2C9 biosensor. However, to our knowledge, there are no examples in the literature of the oriented attachment of 2C9 to an electrode via coupling of an engineered cysteine to a maleimide-functionalized SAM on gold and therefore this study represents the first attempt towards such an electrode system.
Cytochrome b5 (cyt b5 or holo b5) is known as one of the key components in the microsomal cytochrome P450 (CYP) monooxygenase system that metabolizes structurally diverse endogenous and exogenous compounds. It has been reported to modulate many CYPs activity and the effect is both CYP isoform and substrate dependent. However, to date no consensus has been made on the underlying mechanism. In the present study, the surface interactions between cyt b5 and major hepatic CYP isoforms 3A4, 2C9, 2A6 and 2D6 were investigated. Chemical cross-linking coupled with mass spectrometric analysis was used to identify the potential electrostatic interactions on protein surfaces of cyt b5 and CYPs. Subsequently, the interaction models of cyt b5-CYPs were built using these identified cross-linking sites as constraints. For the first time, holo b5 and apo b5 (cyt b5 devoid of heme) surface interactions with CYPs were compared. The models suggest both of them bind to the same the groove on CYPs with very small difference in their orientations. The closest distances between the heme groups of cyt b5 and each CYP isoform are beyond direct electron transfer distance, indicating that cyt b5 likely modulates these CYP isoforms activity through allosteric effect in addition to the potential electron transfer role. In order to confirm that the residues involved in cross-linking are functionally important for cyt b5-CYP interaction, site-directed mutagenesis of CYP3A4 were carried out with the identified Lys residues on CYP3A4 being substituted with neutral residue Ala. In addition, the importance of Arg446 on CYP3A4 at the interface of the cyt b5-CYP3A4 complex model was also accessed by single-point mutation. Mutation of these residues reduced or abolished cyt b5 binding affinity, suggesting that electrostatic interactions on the interface of the two protein are functionally important and the chemical cross-linking coupled with mass spectrometric analysis serves as a useful tool to study protein-protein interaction.
Bioinorganic photochemistry is a rapidly evolving field integrating inorganic photochemistry with biological, medical and environmental sciences. The interactions of light with inorganic species in natural systems, and the applications in artificial systems of medical or environmental importance, form the basis of this challenging inter-disciplinary research area. Bioinorganic Photochemistry provides a comprehensive overview of the concepts and reactions fundamental to the field, illustrating important applications in biological, medical and environmental sciences. Topics covered include: Cosmic and environmental photochemistry Photochemistry of biologically relevant nanoassemblies Molecular aspects of photosynthesis Photoinduced electron transfer in biosystems Modern therapeutic strategies in photomedicine The book concludes with an outlook for the future of environmental protection, discussing emerging techniques in the field of pollution abatement, and the potential for bioinorganic photochemistry as a pathway to developing cheap, environmentally friendly sources of energy. Written as an authoritative guide for researchers involved in the development of bioinorganic photochemical processes, Bioinorganic Photochemistry is also accessible to scientists new to the field, and will be a key reference source for advanced courses in inorganic, and bioinorganic chemistry.
Bioelectrochemistry is a fast growing field at the interface between electrochemistry and other sciences such as biochemistry, analytical chemistry and medicinal chemistry. In the recent years, the methods and the understanding of the fundamentals have seen significant progress, which has led to rapid development in the field. Here, the expert editors have carefully selected contributions to best reflect the latest developments in this hot and rapidly growing interdisciplinary topic. The resulting excellent and timely overview of this multifaceted field covers recent methodological advances, as well as a range of new applications for analytical detection, drug screening, tumor therapy, and for energy conversion in biofuel cells. This book is a must-have for all Electrochemists, Biochemists, Analytical Chemists, and Medicinal Chemists.
In the context of wastewater treatment, Bioelectrochemical Systems (BESs) have gained considerable interest in the past few years, and several BES processes are on the brink of application to this area. This book, written by a large number of world experts in the different sub-topics, describes the different aspects and processes relevant to their development. Bioelectrochemical Systems (BESs) use micro-organisms to catalyze an oxidation and/or reduction reaction at an anodic and cathodic electrode respectively. Briefly, at an anode oxidation of organic and inorganic electron donors can occur. Prime examples of such electron donors are waste organics and sulfides. At the cathode, an electron acceptor such as oxygen or nitrate can be reduced. The anode and the cathode are connected through an electrical circuit. If electrical power is harvested from this circuit, the system is called a Microbial Fuel Cell; if electrical power is invested, the system is called a Microbial Electrolysis Cell. The overall framework of bio-energy and bio-fuels is discussed. A number of chapters discuss the basics – microbiology, microbial ecology, electrochemistry, technology and materials development. The book continues by highlighting the plurality of processes based on BES technology already in existence, going from wastewater based reactors to sediment based bio-batteries. The integration of BESs into existing water or process lines is discussed. Finally, an outlook is provided of how BES will fit within the emerging biorefinery area.
Volume I provides an in-depth discussion of the most recent developments of crucical biosensor components. It concentrates on the interface between the analyte phase and the detector, namely, the implementation of novel recognition elements, including nucleic acids, and of leading-edge technology in the construction of responsive thin layers. Thus, the reader can obtain a foretaste of achievable future progress in the field.
Since its introduction in 1971, the development and application of colloidal gold as a marker in electron microscopy has been phenomenal. Colloidal gold has become the method of choice in immunocytochemistry and many areas of cell biology. This universal method is applicable to most microscopical systems including optical microscopy; scanning, transmission, and high voltage electron microscopy; photoelectron, photon, fluorescent darkfield, and epipolarization microscopy. Colloidal gold allows high and low resolution studies, enzyme and nucleic acid labeling, study of dynamic cellular processes, and virus detection. This book is among the first available to cover the principles and methodology of colloidal gold in microscopy. - Methods are described step by step, to enable researchers to learn these complex procedures solely by reference to these books - Problems and limitations of techniques are discussed - Guides users to avoid problems and choose the correct procedures for specific applications - Contributors are eminent authorities in their fields