Download Free Investigation Of Concrete Properties To Support Implementation Of The New Aashto Pavement Design Guide Book in PDF and EPUB Free Download. You can read online Investigation Of Concrete Properties To Support Implementation Of The New Aashto Pavement Design Guide and write the review.

Design related project level pavement management - Economic evaluation of alternative pavement design strategies - Reliability / - Pavement design procedures for new construction or reconstruction : Design requirements - Highway pavement structural design - Low-volume road design / - Pavement design procedures for rehabilitation of existing pavements : Rehabilitation concepts - Guides for field data collection - Rehabilitation methods other than overlay - Rehabilitation methods with overlays / - Mechanistic-empirical design procedures.
As AASH is expected to eventually adopt the MEPDG at its primary pavement design method, it is critical that the SDDOT become familiar with the MEPGD documentation and associated design software. The research conducted under this project was a first step toward achieving this goal.
"The coefficient of thermal expansion (CTE) is a fundamental property of Portland cement concrete (PCC). The magnitude of temperature related pavement deformations is directly proportional to the CTE during the pavement design life. Because of its critical effect on PCC performance, it is proposed to be considered for distress and smoothness prediction by the newly developed Mechanistic-Empirical Pavement Design Guide (M-E PDG). To account for M-E PDG implementation in Florida, three typical Florida concrete mixtures were experimentally measured for compressive strength, flexural strength, splitting tensile strength, Young's modulus, Poisson's ratio, and CTE according to AASHTO TP-60"--Technical report documentation p.
Bearing Capacity of Roads, Railways and Airfields includes the contributions to the 10th International Conference on the Bearing Capacity of Roads, Railways and Airfields (BCRRA 2017, 28-30 June 2017, Athens, Greece). The papers cover aspects related to materials, laboratory testing, design, construction, maintenance and management systems of transport infrastructure, and focus on roads, railways and airfields. Additional aspects that concern new materials and characterization, alternative rehabilitation techniques, technological advances as well as pavement and railway track substructure sustainability are included. The contributions discuss new concepts and innovative solutions, and are concentrated but not limited on the following topics: · Unbound aggregate materials and soil properties · Bound materials characteritics, mechanical properties and testing · Effect of traffic loading · In-situ measurements techniques and monitoring · Structural evaluation · Pavement serviceability condition · Rehabilitation and maintenance issues · Geophysical assessment · Stabilization and reinforcement · Performance modeling · Environmental challenges · Life cycle assessment and sustainability Bearing Capacity of Roads, Railways and Airfields is essential reading for academics and professionals involved or interested in transport infrastructure systems, in particular roads, railways and airfields.
The Virginia Department of Transportation (VDOT) currently follows pavement design procedures for all new and rehabilitated pavements based on the 1993 AASHTO Guide for Design of Pavement Structures. VDOT's Materials Division is in the process of implementing the Mechanistic-Empirical Pavement Design Guide (MEPDG) procedure via AASHTOWare Pavement ME Design software. The MEPDG uses mechanical properties of pavement materials for pavement structural design. The mechanistic-empirical design process presents a major change in pavement design from the 1993 AASHTO design guide. It calculates pavement responses through mechanistic analysis based on inputs such as traffic, climate, and materials properties to predict the pavement damage or distress over time for both asphalt and concrete pavements. The purpose of this study was to evaluate the mechanical properties of cement-treated aggregate (CTA) and recommend values for use in AASHTOWare Pavement ME Design software. The field construction of CTA was monitored, and samples were collected for laboratory determination of the compressive strength, modulus of elasticity, and modulus of rupture. Tests with the falling weight deflectometer were conducted to back-calculate the CTA modulus of elasticity, and field cores were collected for testing compressive strength and modulus of elasticity. CTA gained strength with increases in cement content, and the increase in strength and the strength level depended on the aggregate properties, such as the resilient modulus of unbound aggregate. All measured properties were highly variable. VDOT would need to implement a strength-based CTA design to be able to use the required mechanical properties of CTA in the MEPDG system. The study recommends using a target design 7-day compressive strength of 600 to 800 psi. Such strength corresponds well with VDOT's current pavement design practice in accordance with the 1993 AASHTO design guide. CTA mechanical properties were suggested based on this target strength. Most of the default values presented in the MEPDG are considered reasonable. In addition, the values recommended for use in the MEPDG are 1.5 million psi for modulus of elasticity and 200 psi for modulus of rupture.