Download Free Investigating Basic College Mathematics Book in PDF and EPUB Free Download. You can read online Investigating Basic College Mathematics and write the review.

The term "mathematics" usually suggests an array of familiar problems with solutions derived from well-known techniques. Discovering Mathematics: The Art of Investigation takes a different approach, exploring how new ideas and chance observations can be pursued, and focusing on how the process invariably leads to interesting questions that would never have otherwise arisen. With puzzles involving coins, postage stamps, and other commonplace items, students are challenged to account for the simple explanations behind perplexing mathematical phenomena. Elementary methods and solutions allow readers to concentrate on the way in which the material is explored, as well as on strategies for answers that aren't immediately obvious. The problems don't require the kind of sophistication that would put them out of reach of ordinary students, but they're sufficiently complex to capture the essential features of mathematical discovery. Complete solutions appear at the end.
The Annotated Instructor's Edition includes a Resource Integration Guide, the complete text of the student edition, and answers to all problems printed in the margins.
Exploring Mathematics: Investigations with Functions is intended for a one- or two-term course in mathematics for college students majoring in the social sciences, English, history, music, art, education, or any of the other majors within liberal arts. The mathematics course of this scope, with an algebra prerequsite, is a popular selection for liberal arts students. This 9-chapter textbook offers modern applications of mathematics in the liberal arts as well as aesthetic features of this rich facet of history and ongoing advancement of human society. With a central theme around the use of the concept of functions, and the inclusion of unique topics and chapters, Exploring Mathematics enables students to explore the next level of mathematics. It attempts to answer the questions, "How does mathematics help us to better our society and understand the world around us?" and "What are some of the unifying ideas of mathematics?" The central theme helps to impress upon the student the feeling that mathematics is more than a disconnected potpourri of rules and tricks. Although it would be inappropriate to force a functional connection in every single section, the theme is used whenever possible to provide conceptual bridges between chapters. Developing the concept of a function augments the presentation of many topics in every chapter. The Text's Objectives: The author chose the topics based on meeting the specific NCTM curriculum standards to: 1. Strengthen estimation and computational skills. 2. Utilize algebraic concepts. 3. Emphasize problem-solving and reasoning. 4. Emphasize pattern and relationship recognition. 5. Highlight importance of units in measurement. 6. Highlight importance of the notion of a mathematical function. 7. Display mathematical connections to other disciplines.
Volume 3 of Research in Collegiate Mathematics Education (RCME) presents state-of-the-art research on understanding, teaching and learning mathematics at the post-secondary level. This volume contains information on methodology and research concentrating on these areas of student learning: Problem Solving; Understanding Concepts; and Understanding Proofs.
Because fluency practice is not a worksheet. Fluency in mathematics is more than adeptly using basic facts or implementing algorithms. Real fluency involves reasoning and creativity, and it varies by the situation at hand. Figuring Out Fluency in Mathematics Teaching and Learning offers educators the inspiration to develop a deeper understanding of procedural fluency, along with a plethora of pragmatic tools for shifting classrooms toward a fluency approach. In a friendly and accessible style, this hands-on guide empowers educators to support students in acquiring the repertoire of reasoning strategies necessary to becoming versatile and nimble mathematical thinkers. It includes: "Seven Significant Strategies" to teach to students as they work toward procedural fluency. Activities, fluency routines, and games that encourage learning the efficiency, flexibility, and accuracy essential to real fluency. Reflection questions, connections to mathematical standards, and techniques for assessing all components of fluency. Suggestions for engaging families in understanding and supporting fluency. Fluency is more than a toolbox of strategies to choose from; it’s also a matter of equity and access for all learners. Give your students the knowledge and power to become confident mathematical thinkers.
In Math for Programmers you’ll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. Summary To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest programming fields. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code! About the book In Math for Programmers you’ll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. What's inside Vector geometry for computer graphics Matrices and linear transformations Core concepts from calculus Simulation and optimization Image and audio processing Machine learning algorithms for regression and classification About the reader For programmers with basic skills in algebra. About the author Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land. Table of Contents 1 Learning math with code PART I - VECTORS AND GRAPHICS 2 Drawing with 2D vectors 3 Ascending to the 3D world 4 Transforming vectors and graphics 5 Computing transformations with matrices 6 Generalizing to higher dimensions 7 Solving systems of linear equations PART 2 - CALCULUS AND PHYSICAL SIMULATION 8 Understanding rates of change 9 Simulating moving objects 10 Working with symbolic expressions 11 Simulating force fields 12 Optimizing a physical system 13 Analyzing sound waves with a Fourier series PART 3 - MACHINE LEARNING APPLICATIONS 14 Fitting functions to data 15 Classifying data with logistic regression 16 Training neural networks
Relations between groups and sets, results and methods of abstract algebra in terms of number theory and geometry, and noncommutative and homological algebra. Solutions. 2006 edition.
Presents an approach to teaching basic math facts to young students, featuring instructional strategies, tips, and classroom activities. Includes a CD-ROM with customizable activities, templates, recording sheets, and teacher tools.