Download Free Inversion Of Geophysical Data Book in PDF and EPUB Free Download. You can read online Inversion Of Geophysical Data and write the review.

Geophysical Data Analysis: Discrete Inverse Theory is an introductory text focusing on discrete inverse theory that is concerned with parameters that either are truly discrete or can be adequately approximated as discrete. Organized into 12 chapters, the book’s opening chapters provide a general background of inverse problems and their corresponding solution, as well as some of the basic concepts from probability theory that are applied throughout the text. Chapters 3-7 discuss the solution of the canonical inverse problem, that is, the linear problem with Gaussian statistics, and discussions on problems that are non-Gaussian and nonlinear are covered in Chapters 8 and 9. Chapters 10-12 present examples of the use of inverse theory and a discussion on the numerical algorithms that must be employed to solve inverse problems on a computer. This book is of value to graduate students and many college seniors in the applied sciences.
This publication is designed to provide a practical understanding of methods of parameter estimation and uncertainty analysis. The practical problems covered range from simple processing of time- and space-series data to inversion of potential field, seismic, electrical, and electromagnetic data. The various formulations are reconciled with field data in the numerous examples provided in the book; well-documented computer programmes are also given to show how easy it is to implement inversion algorithms.
Geophysical measurements are not done for the sake of art only. The ultimategoal is to solve some well-defined geological, tectonical or structural problems. For this purpose, the data have to be interpreted, translated, into a physical model of the subsurface. ... This book describes some ofthe most important common features of different geophysical data sets. (fromthe Introduction) Users at universities but also practitioners in exploration, physics or environmental sciences, wherever signal processing is necessary, will benefit from this textbook.
This book describes the theory and practice of inverting seismic data for the subsurface rock properties of the earth. The primary application is for inverting reflection and/or transmission data from engineering or exploration surveys, but the methods described also can be used for earthquake studies. Seismic Inversion will be of benefit to scientists and advanced students in engineering, earth sciences, and physics. It is desirable that the reader has some familiarity with certain aspects of numerical computation, such as finite-difference solutions to partial differential equations, numerical linear algebra, and the basic physics of wave propagation. For those not familiar with the terminology and methods of seismic exploration, a brief introduction is provided. To truly understand the nuances of seismic inversion, we have to actively practice what we preach (or teach). Therefore, computational labs are provided for most of the chapters, and some field data labs are given as well.
This research monograph presents all the branches of geophysics based on natural electromagnetic fields and their associated subjects. Meant for postgraduate and research level courses, it includes research guidance and collection of magnetotelluric data in some parts of Eastern India and their qualitative and quantitative interpretation. Specific topics highlighted include (i) Electrotellurics, (ii) Magnetotellurics, (iii) Geomagnetic Depth Sounding and Magnetometer Array Studies, (iv) Audio Frequency Magnetotellurics and Magnetic Methods, (v) Marine Magnetotelluric and Marine Controlled Source Electromagnetic Methods, (vi) Electrical Conductivity of Rocks and Minerals and (vii) Mathematical Modelling and Some Topics on Inversion needed for Interpretation of Geoelectrical Data.
An up-to-date overview of global optimization methods used to formulate and interpret geophysical observations, for researchers, graduate students and professionals.
Geophysical Inverse Theory and Applications, Second Edition, brings together fundamental results developed by the Russian mathematical school in regularization theory and combines them with the related research in geophysical inversion carried out in the West. It presents a detailed exposition of the methods of regularized solution of inverse problems based on the ideas of Tikhonov regularization, and shows the different forms of their applications in both linear and nonlinear methods of geophysical inversion. It’s the first book of its kind to treat many kinds of inversion and imaging techniques in a unified mathematical manner.The book is divided in five parts covering the foundations of the inversion theory and its applications to the solution of different geophysical inverse problems, including potential field, electromagnetic, and seismic methods. Unique in its focus on providing a link between the methods used in gravity, electromagnetic, and seismic imaging and inversion, it represents an exhaustive treatise on inversion theory.Written by one of the world’s foremost experts, this work is widely recognized as the ultimate researcher’s reference on geophysical inverse theory and its practical scientific applications. Presents state-of-the-art geophysical inverse theory developed in modern mathematical terminology—the first to treat many kinds of inversion and imaging techniques in a unified mathematical way Provides a critical link between the methods used in gravity, electromagnetic, and seismic imaging and inversion, and represents an exhaustive treatise on geophysical inversion theory Features more than 300 illustrations, figures, charts and graphs to underscore key concepts Reflects the latest developments in inversion theory and applications and captures the most significant changes in the field over the past decade
This collection of papers on geophysical inversion contains research and survey articles on where the field has been and where it's going, and what is practical and what is not. Topics covered include seismic tomography, migration and inverse scattering.
Geophysical inversion is an ill-posed problem. Classical local search method for inversion is depend on initial guess and easy to be trapped in local optimum. The global optimization is a group of novel methods to deal with the problems mentioned above. The book introduces the geophysical inversion theory, including the classical solving approaches firstly. Then, it introduces several typical global inversion approaches including particle swarm optimization (PSO), differential evolution (DE), and multiobjective optimization methods, as well as some examples to inverse the geophysical data, such as gravity, MT sounding, well logging, self-potential, seismic data, using these global optimization approaches.