Download Free Invariants Of Boundary Link Cobordism Book in PDF and EPUB Free Download. You can read online Invariants Of Boundary Link Cobordism and write the review.

An $n$-dimensional $\mu$-component boundary link is a codimension $2$ embedding of spheres $L=\sqcup_{\mu}S DEGREESn \subset S DEGREES{n+2}$ such that there exist $\mu$ disjoint oriented embedded $(n+1)$-manifolds which span the components of $L$. This title proceeds to compute the isomorphism class of $C_{
This book serves as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes the features of the multicomponent case not normally considered by knot-theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, the fact that links are not usually boundary links, free coverings of homology boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group, and disc links. Invariants of the types considered here play an essential role in many applications of knot theory to other areas of topology. This second edition introduces two new chapters OCo twisted polynomial invariants and singularities of plane curves. Each replaces brief sketches in the first edition. Chapter 2 has been reorganized, and new material has been added to four other chapters.
This book serves as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes the features of the multicomponent case not normally considered by knot-theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, the fact that links are not usually boundary links, free coverings of homology boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group, and disc links. Invariants of the types considered here play an essential role in many applications of knot theory to other areas of topology. This second edition introduces two new chapters twisted polynomial invariants and singularities of plane curves. Each replaces brief sketches in the first edition. Chapter 2 has been reorganized, and new material has been added to four other chapters.
This book is intended as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes features of the multicomponent case not normally considered by knot theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, free coverings of homology boundary links, the fact that links are not usually boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group, and disc links. Invariants of the types considered here play an essential role in many applications of knot theory to other areas of topology.
This book serves as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes the features of the multicomponent case not normally considered by knot-theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, the fact that links are not usually boundary links, free coverings of homology boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group, and disc links. Invariants of the types considered here play an essential role in many applications of knot theory to other areas of topology.This second edition introduces two new chapters — twisted polynomial invariants and singularities of plane curves. Each replaces brief sketches in the first edition. Chapter 2 has been reorganized, and new material has been added to four other chapters.
This memoir completes the series of papers beginning with [KL1,KL2], showing that, for a commutative noetherian ring $\Lambda$, either the category of $\Lambda$-modules of finite length has wild representation type or else we can describe the category of finitely generated $\Lambda$-modules, including their direct-sum relations and local-global relations. (There is a possible exception to our results, involving characteristic 2.)
Knot theory is a rapidly developing field of research with many applications, not only for mathematics. The present volume, written by a well-known specialist, gives a complete survey of this theory from its very beginnings to today's most recent research results. An indispensable book for everyone concerned with knot theory.
Noncommutative localization is a powerful algebraic technique for constructing new rings by inverting elements, matrices and more generally morphisms of modules. Originally conceived by algebraists (notably P. M. Cohn), it is now an important tool not only in pure algebra but also in the topology of non-simply-connected spaces, algebraic geometry and noncommutative geometry. This volume consists of 9 articles on noncommutative localization in algebra and topology by J. A. Beachy, P. M. Cohn, W. G. Dwyer, P. A. Linnell, A. Neeman, A. A. Ranicki, H. Reich, D. Sheiham and Z. Skoda. The articles include basic definitions, surveys, historical background and applications, as well as presenting new results. The book is an introduction to the subject, an account of the state of the art, and also provides many references for further material. It is suitable for graduate students and more advanced researchers in both algebra and topology.
Contributes to the theory of Borel equivalence relations, considered up to Borel reducibility, and measures preserving group actions considered up to orbit equivalence. This title catalogs the actions of products of the free group and obtains additional rigidity theorems and relative ergodicity results in this context.
The main objective of this paper is to prove the monodromy conjecture for the local Igusa zeta function of a quasi-ordinary polynomial of arbitrary dimension defined over a number field. In order to do it, we compute the local Denef-Loeser motivic zeta function $Z_{\text{DL}}(h,T)$ of a quasi-ordinary power series $h$ of arbitrary dimension over an algebraically closed field of characteristic zero from its characteristic exponents without using embedded resolution of singularities. This allows us to effectively represent $Z_{\text{DL}}(h,T)=P(T)/Q(T)$ such that almost all the candidate poles given by $Q(T)$ are poles. Anyway, these candidate poles give eigenvalues of the monodromy action on the complex $R\psi_h$ of nearby cycles on $h^{-1}(0).$ In particular we prove in this case the monodromy conjecture made by Denef-Loeser for the local motivic zeta function and the local topological zeta function. As a consequence, if $h$ is a quasi-ordinary polynomial defined over a number field we prove the Igusa monodromy conjecture for its local Igusa zeta function.