Download Free Intuitionistic Bipolar Neutrosophic Set And Its Application To Intuitionistic Bipolar Neutrosophic Graphs Book in PDF and EPUB Free Download. You can read online Intuitionistic Bipolar Neutrosophic Set And Its Application To Intuitionistic Bipolar Neutrosophic Graphs and write the review.

This manuscript is devoted to study a new concept of intuitionistic bipolar neutrosophic set with the operations like union, intersection and complement. Also, an application to intuitionistic bipolar neutrosophic graph with examples are developed. Further, we presented the Cartesian product, cross product, lexicographic product and strong product with suitable examples.
In this article, we combine the concept of bipolar neutrosophic set and graph theory. We introduce the notions of bipolar single valued neutrosophic graphs, strong bipolar single valued neutrosophic graphs, complete bipolar single valued neutrosophic graphs, regular bipolar single valued neutrosophic graphs and investigate some of their related properties.
In 1998, Smarandache originally considered the concept of neutrosophic set from philosophical point of view. The notion of a single-valued neutrosophic set is a subclass of the neutrosophic set from a scientific and engineering point of view and an extension of intuitionistic fuzzy sets. A bipolar single-valued neutrosophic set is an extension of a bipolar fuzzy set, which provides us an additional possibility to represent uncertainty, imprecise, incomplete and inconsistent information existing in real situations. In this research article, we apply the concept of bipolar single-valued neutrosophic sets to graph structures and present a novel framework for handling bipolar neutrosophic information by combining bipolar neutrosophic sets with graph structures. Several basic notions concerning bipolar single-valued neutrosophic graph structures are introduced, and some related properties are investigated.We also consider the applications of bipolar single-valued neutrosophic graph structures in decision making. In particular, efficient algorithms are developed to solve decision-making problems regarding recognition of each country’s participation in its conspicuous relationships, detection of psychological improvement of patients in a mental hospital and uncovering the undercover reasons for global terrorism.
This eighth volume of Collected Papers includes 75 papers comprising 973 pages on (theoretic and applied) neutrosophics, written between 2010-2022 by the author alone or in collaboration with the following 102 co-authors (alphabetically ordered) from 24 countries: Mohamed Abdel-Basset, Abduallah Gamal, Firoz Ahmad, Ahmad Yusuf Adhami, Ahmed B. Al-Nafee, Ali Hassan, Mumtaz Ali, Akbar Rezaei, Assia Bakali, Ayoub Bahnasse, Azeddine Elhassouny, Durga Banerjee, Romualdas Bausys, Mircea Boșcoianu, Traian Alexandru Buda, Bui Cong Cuong, Emilia Calefariu, Ahmet Çevik, Chang Su Kim, Victor Christianto, Dae Wan Kim, Daud Ahmad, Arindam Dey, Partha Pratim Dey, Mamouni Dhar, H. A. Elagamy, Ahmed K. Essa, Sudipta Gayen, Bibhas C. Giri, Daniela Gîfu, Noel Batista Hernández, Hojjatollah Farahani, Huda E. Khalid, Irfan Deli, Saeid Jafari, Tèmítópé Gbóláhàn Jaíyéolá, Sripati Jha, Sudan Jha, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, M. Karthika, Kawther F. Alhasan, Giruta Kazakeviciute-Januskeviciene, Qaisar Khan, Kishore Kumar P K, Prem Kumar Singh, Ranjan Kumar, Maikel Leyva-Vázquez, Mahmoud Ismail, Tahir Mahmood, Hafsa Masood Malik, Mohammad Abobala, Mai Mohamed, Gunasekaran Manogaran, Seema Mehra, Kalyan Mondal, Mohamed Talea, Mullai Murugappan, Muhammad Akram, Muhammad Aslam Malik, Muhammad Khalid Mahmood, Nivetha Martin, Durga Nagarajan, Nguyen Van Dinh, Nguyen Xuan Thao, Lewis Nkenyereya, Jagan M. Obbineni, M. Parimala, S. K. Patro, Peide Liu, Pham Hong Phong, Surapati Pramanik, Gyanendra Prasad Joshi, Quek Shio Gai, R. Radha, A.A. Salama, S. Satham Hussain, Mehmet Șahin, Said Broumi, Ganeshsree Selvachandran, Selvaraj Ganesan, Shahbaz Ali, Shouzhen Zeng, Manjeet Singh, A. Stanis Arul Mary, Dragiša Stanujkić, Yusuf Șubaș, Rui-Pu Tan, Mirela Teodorescu, Selçuk Topal, Zenonas Turskis, Vakkas Uluçay, Norberto Valcárcel Izquierdo, V. Venkateswara Rao, Volkan Duran, Ying Li, Young Bae Jun, Wadei F. Al-Omeri, Jian-qiang Wang, Lihshing Leigh Wang, Edmundas Kazimieras Zavadskas.
In this paper, a definition of quadripartitioned single valued bipolar neutrosophic set (QSVBNS) is introduced as a generalization of both quadripartitioned single valued neutrosophic sets (QSVNS) and bipolar neutrosophic sets (BNS). There is an inherent symmetry in the definition of QSVBNS. Some operations on them are defined and a set theoretic study is accomplished. Various similarity measures and distance measures are defined on QSVBNS. An algorithm relating to multi-criteria decision making problem is presented based on quadripartitioned bipolar weighted similarity measure. Finally, an example is shown to verify the flexibility of the given method and the advantage of considering QSVBNS in place of fuzzy sets and bipolar fuzzy sets.
In this research paper, the graph of the bipolar single-valued neutrosophic set model (BSVNS) is proposed. The graphs of single valued neutrosophic set models is generalized by this graph. For the BSVNS model, several results have been proved on complete and isolated graphs.
This book addresses single-valued neutrosophic graphs and their applications. In addition, it introduces readers to a number of central concepts, including certain types of single-valued neutrosophic graphs, energy of single-valued neutrosophic graphs, bipolar single-valued neutrosophic planar graphs, isomorphism of intuitionistic single-valued neutrosophic soft graphs, and single-valued neutrosophic soft rough graphs. Divided into eight chapters, the book seeks to remedy the lack of a mathematical approach to indeterminate and inconsistent information. Chap. 1 presents a concise review of single-valued neutrosophic sets, while Chap. 2 explains the notion of neutrosophic graph structures and explores selected properties of neutrosophic graph structures. Chap. 3 discusses specific bipolar neutrosophic graphs. Chap. 4 highlights the concept of interval-valued neutrosophic graphs, while Chap. 5 presents certain notions concerning interval-valued neutrosophic graph structures. Chap. 6 addresses the concepts of rough neutrosophic digraphs and neutrosophic rough digraphs. Chap. 7 focuses on the concepts of neutrosophic soft graphs and intuitionistic neutrosophic soft graphs, before Chap. 8 rounds out the book by considering neutrosophic soft rough graphs.
Neutrosophic vague graphs are employed as a mathematical key to hold an imprecise and unspecified data. Vague sets gives more intuitive graphical notation of vague information, that delicates crucially better analysis in data relationships, incompleteness and similarity measures. In this paper, the neutrosophic bipolar vague line graphs are introduced. The necessary and sufficient condition for a line graph to be neutrosophic bipolar vague line graph is provided. Further, homomorphism, weak vertex and weak line isomorphism are discussed. The given results are illustrated with suitable example.
In this paper, we define the regular and totally regular bipolar single valued neutrosophic hypergraphs, and discuss the order and size along with properties of regular and totally regular bipolar single valued neutrosophic hypergraphs. We extend work on completeness of bipolar single valued neutrosophic hypergraphs.
A bipolar model is a significant model wherein positive data revels the liked object, while negative data speaks the disliked object. The principle reason for analysing the vague graphs is to demonstrate the stability of few properties in a graph, characterized or to be characterized in using vagueness. In this present research article, the new concept of neutrosophic bipolar vague sets are initiated. Further, its application to neutrosophic bipolar vague graphs are introduced. Moreover, some remarkable properties of strong neutrosophic bipolar vague graphs, complete neutrosophic bipolar vague graphs and complement neutrosophic bipolar vague graphs are explored and the proposed ideas are outlined with an appropriate example.