Download Free Introductory Statistical Mechanics For Physicists Book in PDF and EPUB Free Download. You can read online Introductory Statistical Mechanics For Physicists and write the review.

This concise introduction is geared toward those concerned with solid state or low temperature physics. It presents the principles with simplicity and clarity, reviewing issues of critical interest. 1963 edition.
Four-part treatment covers principles of quantum statistical mechanics, systems composed of independent molecules or other independent subsystems, and systems of interacting molecules, concluding with a consideration of quantum statistics.
This textbook covers the basic principles of statistical physics and thermodynamics. The text is pitched at the level equivalent to first-year graduate studies or advanced undergraduate studies. It presents the subject in a straightforward and lively manner. After reviewing the basic probability theory of classical thermodynamics, the author addresses the standard topics of statistical physics. The text demonstrates their relevance in other scientific fields using clear and explicit examples. Later chapters introduce phase transitions, critical phenomena and non-equilibrium phenomena.
Statistical physics is a core component of most undergraduate (and some post-graduate) physics degree courses. It is primarily concerned with the behavior of matter in bulk-from boiling water to the superconductivity of metals. Ultimately, it seeks to uncover the laws governing random processes, such as the snow on your TV screen. This essential new textbook guides the reader quickly and critically through a statistical view of the physical world, including a wide range of physical applications to illustrate the methodology. It moves from basic examples to more advanced topics, such as broken symmetry and the Bose-Einstein equation. To accompany the text, the author, a renowned expert in the field, has written a Solutions Manual/Instructor's Guide, available free of charge to lecturers who adopt this book for their courses. Introduction to Statistical Physics will appeal to students and researchers in physics, applied mathematics and statistics.
Suitable for advanced undergraduates and graduate students of physics, this uniquely comprehensive overview provides a rigorous, integrated treatment of physical principles and techniques related to gases, liquids, solids, and their phase transitions. 1975 edition.
This book presents a mathematically rigorous approach to the main ideas and phenomena of statistical physics. The introduction addresses the physical motivation, focusing on the basic concept of modern statistical physics, that is the notion of Gibbsian random fields. Properties of Gibbsian fields are analysed in two ranges of physical parameters: "regular" (corresponding to high-temperature and low-density regimes) where no phase transition is exhibited, and "singular" (low temperature regimes) where such transitions occur. Next, a detailed approach to the analysis of the phenomena of phase transitions of the first kind, the Pirogov-Sinai theory, is presented. The author discusses this theory in a general way and illustrates it with the example of a lattice gas with three types of particles. The conclusion gives a brief review of recent developments arising from this theory. The volume is written for the beginner, yet advanced students will benefit from it as well. The book will serve nicely as a supplementary textbook for course study. The prerequisites are an elementary knowledge of mechanics, probability theory and functional analysis.
* An applied focus for electrical engineers and materials scientists. * Theoretical results supported with real-world systems and applications. * Includes worked examples and self-study questions. * Solutions manual available.
This book provides a comprehensive presentation of the basics of statistical physics. The first part explains the essence of statistical physics and how it provides a bridge between microscopic and macroscopic phenomena, allowing one to derive quantities such as entropy. Here the author avoids going into details such as Liouville’s theorem or the ergodic theorem, which are difficult for beginners and unnecessary for the actual application of the statistical mechanics. In the second part, statistical mechanics is applied to various systems which, although they look different, share the same mathematical structure. In this way readers can deepen their understanding of statistical physics. The book also features applications to quantum dynamics, thermodynamics, the Ising model and the statistical dynamics of free spins.
Rigorous and comprehensive, this textbook introduces undergraduate students to simulation methods in statistical physics. The book covers a number of topics, including the thermodynamics of magnetic and electric systems; the quantum-mechanical basis of magnetism; ferrimagnetism, antiferromagnetism, spin waves and magnons; liquid crystals as a non-ideal system of technological relevance; and diffusion in an external potential. It also covers hot topics such as cosmic microwave background, magnetic cooling and Bose–Einstein condensation. The book provides an elementary introduction to simulation methods through algorithms in pseudocode for random walks, the 2D Ising model, and a model liquid crystal. Any formalism is kept simple and derivations are worked out in detail to ensure the material is accessible to students from subjects other than physics.
Rigorous and comprehensive, this textbook introduces undergraduate students to simulation methods in statistical physics. The book covers a number of topics, including the thermodynamics of magnetic and electric systems; the quantum-mechanical basis of magnetism; ferrimagnetism, antiferromagnetism, spin waves and magnons; liquid crystals as a non-ideal system of technological relevance; and diffusion in an external potential. It also covers hot topics such as cosmic microwave background, magnetic cooling and Bose-Einstein condensation. The book provides an elementary introduction to simulation methods through algorithms in pseudocode for random walks, the 2D Ising model, and a model liquid crystal. Any formalism is kept simple and derivations are worked out in detail to ensure the material is accessible to students from subjects other than physics.