Download Free Introductory Agrometeorology And Climate Change Book in PDF and EPUB Free Download. You can read online Introductory Agrometeorology And Climate Change and write the review.

Weather and climate is a natural resource which is considered as a basic input in agricultural planning. It affects all the agricultural activities directly or indirectly. Agrometeorology is primarily concerned with the interactions among meteorological, hydrological and pedological factors that influence production systems in agriculture and allied sectors like horticulture, animal husbandry, fishery, forestry, etc. Thus the role of an agrometeorologist is to define all these interactions, to correlate physical environments with biological responses and apply the relevant meteorological skills to help farmers for exploiting weather conditions and improve agricultural production both in quality and quantity. In this backdrop, agrometeorology has been recommended as a core subject in the curriculum of B. Sc. (Agriculture), B. Sc. (Horticulture) and B. Sc. (Forestry) courses of the agricultural universities. Keeping this in view, this textbook has been written for the undergraduate students.
Weather is a basic input for agriculture. It affects the agricultural planning in a big way starting from land preparation to harvesting, processing and transportation. Thus, climate and weather may be considered as the most critical factor determining the sustainability of agricultural systems. Agrometeorology is now recognised as a full-fledged discipline and recommended as a core subject in the curriculum of the agricultural universities. The book covers the syllabus of the course 'Introductory Agrometeorology and Climate Change' meant for undergraduate students of agriculture, horticulture and forestry.
Learn how the climate can affect crop production! Agrometeorology: Principles and Applications of Climate Studies in Agriculture is a much-needed reference resource on the practice of merging the science of meteorology with the service of agriculture. Written in a concise, straightforward style, the book presents examples of clinical applications (methods, techniques, models, and services) in varying climates and agricultural systems, documenting up-to-date research literature from around the world. Its systematic approach—different from most books on the subject—makes it an essential tool for teaching, planning, and practical use by working farmers, as it examines topics such as solar radiation, effective rain, drought monitoring, evapotranspiration, and remote sensing. Agrometeorology: Principles and Applications of Climate Studies in Agriculture examines the developing discipline that international agencies such as the World Meteorological Organization (WMO) and the Food and Agriculture Organization (FAO) have declared to be an important growth area in university education. A panel of academics, researchers, and practitioners explore the role of agrometeorology in optimum crop growth, from the interactions between meteorological and hydrological factors and agriculture, including horticulture, animal husbandry, and forestry. The book addresses pressing topics of agriculture resource utilization and management, such as regional and land use planning; soil and water conservation; frost; growing degree day; risk analysis of climate hazards; animal parasites; harvest forecasts; crop models; decision support systems (DSS); agroclimatological forecast; and the ecological and economic implications of climate change. Agrometeorology: Principles and Applications of Climate Studies in Agriculture also addresses: managing farm water resources environmental temperature planning for frost mitigation photosynthetically active radiation (PAR) thermoperiodism managing the extremes—droughts and floods using computers to manage agricultural systems and much more! The interdisciplinary focus and reader-friendly style of Agrometeorology: Principles and Applications of Climate Studies in Agriculture make the book invaluable to scientists, planners, and academics working in the major agricultural sciences, geography, natural resource studies, and meteorology.
The book is a practical manual which has been created to support the syllabus of agro-meteorology courses specifically designed for graduate and post-graduate students. The topics covered in the manual include working with meteorological instruments for measurement of various meteorological parameters like temperature, humidity, sunshine hours, precipitation, etc. Separate chapters have been included for computation of growing degree days, agro-climatic zones, crop modelling and agro-advisory services. The book will have great appeal to students of agriculture, horticulture, and forestry.
Farmers Agricultural policymakers Environmentalists
Designed as a textbook for undergraduate and postgraduate students of agriculture, it fulfills the need for an uptodate comprehensive information (as per the syllabus framed by ICAR) on the theoretical and applied aspects of agricultural meteorology. Illustrated with graphs, schematic representations, photographs and pictures, the scope of the book is divided into three major areas of study: 1. Discusses the basic aspects of agricultural meteorology; introduces the principal meteorological variables (with emphasis on radiation and temperature) that govern the atmosphere and highlights the causal factors leading to the global and local weather and climate variations like atmospheric pressure and winds, clouds, monsoon and precipitation. 2.Addresses the effects of weather on various crops and discusses applications of Hopkin’s bioclimatic law to mitigate the ill effects of weather on crop production; explains agroclimatic classification and discusses droughts and their management strategy with special reference to crops. 3.Deals with various types of weather forecasting and their techniques including weather service to farmers; explains crop growth simulation modelling—a newly emerging area in agricultural meteorology; focuses on influence of weather in relation to pest and disease outbreaks, discusses climate change and provides introduction to remote sensing. A special feature of the book is that it contains many indigenous examples related to the humid tropics. In addition, the book has many plates and information on basic and sophisticated meteorological equipment. A variety of chapter-end questions help develop students’ understanding of salient concepts and makes the material presented more meaningful.
Agricultural Meteorology and Climatology is an introductory textbook for meteorology and climatology courses at faculties of agriculture and for agrometeorology and agroclimatology courses at faculties whose curricula include these subjects. Additionally, this book may be a useful source of information for practicing agronomists and all those interested in different aspects of weather and climate impacts on agriculture. In times when scientific knowledge and practical experience increase exponentially, it is not a simple matter to prepare a textbook. Therefore we decided not to constrain Agricultural Meteorology and Climatology by its binding pages. Only a part of it is a conventional textbook. The other part includes numerical examples (easy-to-edit worksheets) and recommended additional reading available on-line in digital form. To keep the reader's attention, the book is divided into three sections: Basics, Applications and Agrometeorological Measurements with Numerical Examples.
Agricultural production is highly sensitive to weather and climate-related disasters such as drought, storm and flood. While it is not possible to prevent the occurrence of natural disasters, the resultant disastrous effects can be reduced mitigated through proper planning and effective preparation. This book, based on a gathering of experts in Beijing, discusses ways to reduce the vulnerability of agriculture to disaster and extreme events, both by accurate and timely warning, and by impact-reducing countermeasures.
Biometeorology continues to grow as a discipline. It is increasingly recognised for its importance in providing science of relevance to society and well being of the environment. This book is the first in a new book series on Biometeorology. The purpose of the new series is to communicate the interdisciplinary philosophy and science of biometeorology to as wide an audience as possible, introduce scientists and policy makers to the societal relevance of and recent developments in its s- fields and demonstrate how a biometeorological approach can provide insights to the understanding and possible solution of cross-cutting environmental issues. One such cross-cutting environmental issue is climate change. While the literature on the science of climate change, climate change mitigation and the impacts of climate change is voluminous, that on adaptation to climate change is meagre in comparison. The purpose of this book is to partly redress this imbalance by providing insights from a biometeorological perspective. The book acknowledges that society has a long history of adapting to the impacts associated with climatic variability and change but makes the point that climate change poses a real threat to already strained coping systems. Therefore there is a need to realign human use systems with changing climate conditions.
Roughly a billion people around the world continue to live in state of chronic hunger and food insecurity. Unfortunately, efforts to improve their livelihoods must now unfold in the context of a rapidly changing climate, in which warming temperatures and changing rainfall regimes could threaten the basic productivity of the agricultural systems on which most of the world’s poor directly depend. But whether climate change represents a minor impediment or an existential threat to development is an area of substantial controversy, with different conclusions wrought from different methodologies and based on different data. This book aims to resolve some of the controversy by exploring and comparing the different methodologies and data that scientists use to understand climate’s effects on food security. In explains the nature of the climate threat, the ways in which crops and farmers might respond, and the potential role for public and private investment to help agriculture adapt to a warmer world. This broader understanding should prove useful to both scientists charged with quantifying climate threats, and policy-makers responsible for crucial decisions about how to respond. The book is especially suitable as a companion to an interdisciplinary undergraduate or graduate level class.