Download Free Introduction To Traveling Waves Book in PDF and EPUB Free Download. You can read online Introduction To Traveling Waves and write the review.

Introduction to Traveling Waves is an invitation to research focused on traveling waves for undergraduate and masters level students. Traveling waves are not typically covered in the undergraduate curriculum, and topics related to traveling waves are usually only covered in research papers, except for a few texts designed for students. This book includes techniques that are not covered in those texts. Through their experience involving undergraduate and graduate students in a research topic related to traveling waves, the authors found that the main difficulty is to provide reading materials that contain the background information sufficient to start a research project without an expectation of an extensive list of prerequisites beyond regular undergraduate coursework. This book meets that need and serves as an entry point into research topics about the existence and stability of traveling waves. Features Self-contained, step-by-step introduction to nonlinear waves written assuming minimal prerequisites, such as an undergraduate course on linear algebra and differential equations. Suitable as a textbook for a special topics course, or as supplementary reading for courses on modeling. Contains numerous examples to support the theoretical material. Supplementary MATLAB codes available via GitHub.
Introduction to Traveling Waves is an invitation to research focused on traveling waves for undergraduate and masters level students. Traveling waves are not typically covered in the undergraduate curriculum, and topics related to traveling waves are usually only covered in research papers, except for a few texts designed for students. This book includes techniques that are not covered in those texts. Through their experience involving undergraduate and graduate students in a research topic related to traveling waves, the authors found that the main difficulty is to provide reading materials that contain the background information sufficient to start a research project without an expectation of an extensive list of prerequisites beyond regular undergraduate coursework. This book meets that need and serves as an entry point into research topics about the existence and stability of traveling waves. Features Self-contained, step-by-step introduction to nonlinear waves written assuming minimal prerequisites, such as an undergraduate course on linear algebra and differential equations. Suitable as a textbook for a special topics course, or as supplementary reading for courses on modeling. Contains numerous examples to support the theoretical material. Supplementary MATLAB codes available via GitHub.
This book is based on an undergraduate course taught at the IAS/Park City Mathematics Institute (Utah) on linear and nonlinear waves. The first part of the text overviews the concept of a wave, describes one-dimensional waves using functions of two variables, provides an introduction to partial differential equations, and discusses computer-aided visualization techniques. The second part of the book discusses traveling waves, leading to a description of solitary waves and soliton solutions of the Klein-Gordon and Korteweg-deVries equations. The wave equation is derived to model the small vibrations of a taut string, and solutions are constructed via d'Alembert's formula and Fourier series.The last part of the book discusses waves arising from conservation laws. After deriving and discussing the scalar conservation law, its solution is described using the method of characteristics, leading to the formation of shock and rarefaction waves. Applications of these concepts are then given for models of traffic flow. The intent of this book is to create a text suitable for independent study by undergraduate students in mathematics, engineering, and science. The content of the book is meant to be self-contained, requiring no special reference material. Access to computer software such as MathematicaR, MATLABR, or MapleR is recommended, but not necessary. Scripts for MATLAB applications will be available via the Web. Exercises are given within the text to allow further practice with selected topics.
Although the Partial Differential Equations (PDE) models that are now studied are usually beyond traditional mathematical analysis, the numerical methods that are being developed and used require testing and validation. This is often done with PDEs that have known, exact, analytical solutions. The development of analytical solutions is also an active area of research, with many advances being reported recently, particularly traveling wave solutions for nonlinear evolutionary PDEs. Thus, the current development of analytical solutions directly supports the development of numerical methods by providing a spectrum of test problems that can be used to evaluate numerical methods. This book surveys some of these new developments in analytical and numerical methods, and relates the two through a series of PDE examples. The PDEs that have been selected are largely "named'' since they carry the names of their original contributors. These names usually signify that the PDEs are widely recognized and used in many application areas. The authors’ intention is to provide a set of numerical and analytical methods based on the concept of a traveling wave, with a central feature of conversion of the PDEs to ODEs. The Matlab and Maple software will be available for download from this website shortly. www.pdecomp.net Includes a spectrum of applications in science, engineering, applied mathematics Presents a combination of numerical and analytical methods Provides transportable computer codes in Matlab and Maple
An engineering-oriented introduction to wave propagation by an award-winning MIT professor, with highly accessible expositions and mathematical details--many classical but others not heretofore published.
Big Nate is the star goalie of his school's soccer team, and he is tasked with defending his goal and saving the day against Jefferson Middle School, their archrival.
Emphasizing physics over mathematics, this popular, classroom-tested text helps advanced undergraduates acquire a sound physical understanding of wave phenomena. This second edition of Oscillations and Waves: An Introduction contains new widgets, animations in Python, and exercises, as well as updated chapter content throughout; continuing to ease the difficult transition for students between lower-division courses that mostly encompass algebraic equations and upper-division courses that rely on differential equations. Assuming familiarity with the laws of physics and college-level mathematics, the author covers aspects of optics that crucially depend on the wave-like nature of light, such as wave optics. Examples explore discrete mechanical, optical, and quantum mechanical systems; continuous gases, fluids, and elastic solids; electronic circuits; and electromagnetic waves. The text also introduces the conventional complex representation of oscillations and waves during the discussion of quantum mechanical waves. Features: Fully updated throughout and featuring new widgets, animations, and end of chapter exercises to enhance understanding Offers complete coverage of advanced topics in waves, such as electromagnetic wave propagation through the ionosphere Includes examples from mechanical systems, elastic solids, electronic circuits, optical systems, and other areas