Download Free Introduction To The Rarer Elements Book in PDF and EPUB Free Download. You can read online Introduction To The Rarer Elements and write the review.

This book deals with the rare earth elements (REE), which are a series of 17 transition metals: scandium, yttrium and the lanthanide series of elements (lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium). They are relatively unknown to the wider public, despite their numerous applications and their critical role in many high-tech applications, such as high-temperature superconductors, phosphors (for energy-saving lamps, flat-screen monitors and flat-screen televisions), rechargeable batteries (household and automotive), very strong permanent magnets (used for instance in wind turbines and hard-disk drives), or even in a medical MRI application. This book describes the history of their discovery, the major REE ore minerals and the major ore deposits that are presently being exploited (or are planned to be exploited in the very near future), the physical and chemical properties of REEs, the mineral processing of REE concentrates and their extractive metallurgy, the applications of these elements, their economic aspects and the influential economical role of China, and finally the recycling of the REE, which is an emerging field.
"Rare Earth Frontiers is a timely text. As Klinger notes, rare earths are neither rare nor technically earths, but they are still widely believed to be both. Although her approach focuses on the human, or cultural, geography of rare earths mining, she does not ignore the geological occurrence of these mineral types, both on Earth and on the moon.... This volume is excellently organized, insightfully written, and extensively sourced."―Choice Drawing on ethnographic, archival, and interview data gathered in local languages and offering possible solutions to the problems it documents, this book examines the production of the rare earth frontier as a place, a concept, and a zone of contestation, sacrifice, and transformation. Rare Earth Frontiers is a work of human geography that serves to demystify the powerful elements that make possible the miniaturization of electronics, green energy and medical technologies, and essential telecommunications and defense systems. Julie Michelle Klinger draws attention to the fact that the rare earths we rely on most are as common as copper or lead, and this means the implications of their extraction are global. Klinger excavates the rich historical origins and ongoing ramifications of the quest to mine rare earths in ever more impossible places. Klinger writes about the devastating damage to lives and the environment caused by the exploitation of rare earths. She demonstrates in human terms how scarcity myths have been conscripted into diverse geopolitical campaigns that use rare earth mining as a pretext to capture spaces that have historically fallen beyond the grasp of centralized power. These include legally and logistically forbidding locations in the Amazon, Greenland, and Afghanistan, and on the Moon.
The Handbook of Rare Earth Elements focuses on the essential role of modern instrumental analytics in the recycling, purification and analysis of rare earth elements. Due to their numerous applications, e.g. in novel magnetic materials for computer hardware, mobile phones and displays, rare earth elements have become a strategic and valuable resource. The detailed knowledge of rare earth element contents at every step of their life cycle is of great importance. This reference work was compiled with contribution from an international team of expert authors from Academia and Industry to presend a comprehensive discussion on the state-of-the-art of rare earth element analysis for industrial and scientific purposes, recycling processes and purification of REEs from various sources. Written with Analytical Chemists, Inorganic Chemists, Spectroscopists as well as Industry Practitioners in mind, the Handbook of Rare Earth Elements is an indispensable reference for everyone working with rare earth elements.
Developments in Geochemistry, Volume 2: Rare Earth Element Geochemistry presents the remarkable developments in the chemistry and geochemistry of the rare earth elements. This book discusses the analytical techniques and the recognition that rare earth fractionation occurs naturally in different ways. Organized into 13 chapters, this volume begins with an overview of the wide array of types and sizes of the cation coordination polyhedral in rock-forming minerals. This text then examines the application of rare earth element abundances to petrogenetic problems that has centered on the evolution of igneous rocks. Other chapters consider the matching of observed rare earth element abundances with those provided by the theoretical modeling of petrogenetic processes. This book discusses as well the hypotheses on the genesis of a rock or mineral suite. The final chapter deals with the principal analytical methods. This book is a valuable resource for undergraduates, lecturers, and researchers who study petrology and geochemistry.
In order to use rare earths successfully in various applications, a good understanding of the chemistry of these elements is of paramount importance. Nearly three to four decades have passed since titles such as The Rare Earths edited by F.H. Spedding and A.H. Daane, The chemistry of the Rare Earth Elements by N.E. Topp and Complexes of the Rare Earths by S.P. Sinha were published. There have been many international conferences and symposia on rare earths, as well as the series of volumes entitled Handbook of Physics and Chemistry of Rare Earths edited by K.A. Gschneidner and L. Eyring. Thus, there is a need for a new title covering modern aspects of rare earth complexes along with the applications. The present title consists of twelve chapters. 1. Introduction2. General aspects3. Stability of complexes4. Lanthanide complexes5. Structural chemistry of lanthanide compounds6. Organometallic complexes7. Kinetics and mechanisms of rare earths complexation8. Spectroscopy of lanthanide complexes9. Photoelectron spectroscopy of rare earths10. Lanthanide NMR shift reagents11. Environmental ecological biological aspects12. Applications The authors studied in schools headed by pioneers in rare earth chemistry, have a combined experience of one hundred and fifty years in inorganic chemistry, rare earth complex chemistry, nuclear and radiochemistry of rare earths and supramolecular chemistry. The present monograph is a product of this rich experience.
The growth and development witnessed today in modern science, engineering, and technology owes a heavy debt to the rare, refractory, and reactive metals group, of which niobium is a member. Extractive Metallurgy of Niobium presents a vivid account of the metal through its comprehensive discussions of properties and applications, resources and resource processing, chemical processing and compound preparation, metal extraction, and refining and consolidation. Typical flow sheets adopted in some leading niobium-producing countries for the beneficiation of various niobium sources are presented, and various chemical processes for producing pure forms of niobium intermediates such as chloride, fluoride, and oxide are discussed. The book also explains how to liberate the metal from its intermediates and describes the physico-chemical principles involved. It is an excellent reference for chemical metallurgists, hydrometallurgists, extraction and process metallurgists, and minerals processors. It is also valuable to a wide variety of scientists, engineers, technologists, and students interested in the topic.
This book describes in a comprehensive manner the technical aspects of separation of rare earth elements into individual elements for industrial and commercial use. The authors include details on and differentiate among the effective separation of rare earth elements for various parts of the world. They introduce new applications of separation of rare earth elements from concentrates of diverse ore types.
Rare Earth Elements are a group of 17 metals which have a central role in modern industry, increasingly used in the fields of green technologies, high technological consumer goods, industrial and medical appliances and modern weapons systems. Although deposits of Rare Earths are globally dispersed, over 90% of global demand has been provided by Chinese mines since the late 1990s, leading to a situation where China has a virtual monopoly. This book surveys the Rare Earths mining industry, discusses the extent to which Rare Earths really are scarce elsewhere in the world and assesses the economics of production, considering arguments for the rationing of supply, for higher pricing and for a total export embargo. This actually occurred in 2010, demonstrating the vulnerability of the rest of the world to China’s control of these increasingly vital resources.