Download Free Introduction To Supersymmetry Book in PDF and EPUB Free Download. You can read online Introduction To Supersymmetry and write the review.

Supersymmetry is a symmetry which combines bosons and fermions in the same multiplet of a larger group which unites the transformations of this symmetry with that of spacetime. Thus every bosonic particle must have a fermionic partner and vice versa. Since this is not what is observed, this symmetry with inherent theoretical advantages must be badly broken. It is hoped that the envisaged collider experiments at CERN will permit a first experimental test, which is expected to revive the interest in supersymmetry considerably.This revised edition of the highly successful text of 20 years ago provides an introduction to supersymmetry, and thus begins with a substantial chapter on spacetime symmetries and spinors. Following this, graded algebras are introduced, and thereafter the supersymmetric extension of the spacetime Poincaré algebra and its representations. The Wess-Zumino model, superfields, supersymmetric Lagrangians, and supersymmetric gauge theories are treated in detail in subsequent chapters. Finally the breaking of supersymmetry is addressed meticulously. All calculations are presented in detail so that the reader can follow every step.
A brief introductory description of the new physical and mathematical ideas involved in formulating supersymmetric theories. The basic ideas are worked out in low space dimensionalities and techniques where the formulae do not obscure the concepts.
Supersymmetry represents the culmination of the search for fundamental symmetries that has dominated particle physics for 50 years. Traditionally, the constituents of matter (fermions) were regarded as different from the particles (bosons) transmitting the forces between them. In supersymmetry, fermions and bosons are unified. Intended for graduate students in particle physics, and researchers in experimental and phenomenological supersymmetry, this textbook, first published in 2007, provides a simple introduction to a previously formidably technical field. Its elementary, practical treatment brings readers to the frontier of contemporary research, in particular the experiments at the Large Hadron Collider. Theories are constructed through an intuitive 'trial and error' approach. Basic elements of spinor formalism and superfields are introduced, allowing readers to access more advanced treatments. Emphasis is placed on physical understanding, and on detailed derivations of important steps. Many short exercises are included, making for a valuable and accessible self-study tool.
To the 1st edition of this monograph (addressed to advanced graduate students and researchers ) the author, responding to developments within superstring theory, has added 51/2 chapters dealing with two- dimensional supersymmetry. Authoritative, as lucid as the subject matter allows (yet demanding nonetheless!), attractively produced and priced. (NW) Annotation copyrighted by Book News, Inc., Portland, OR
This OA text develops the basic concepts of supersymmetry for experimental and phenomenological particle physicists and graduate students.
The past decade has witnessed dramatic developments in the field of theoretical physics. This book is a comprehensive introduction to these recent developments. It contains a review of the Standard Model, covering non-perturbative topics, and a discussion of grand unified theories and magnetic monopoles. It introduces the basics of supersymmetry and its phenomenology, and includes dynamics, dynamical supersymmetry breaking, and electric-magnetic duality. The book then covers general relativity and the big bang theory, and the basic issues in inflationary cosmologies before discussing the spectra of known string theories and the features of their interactions. The book also includes brief introductions to technicolor, large extra dimensions, and the Randall-Sundrum theory of warped spaces. This will be of great interest to graduates and researchers in the fields of particle theory, string theory, astrophysics and cosmology. The book contains several problems, and password protected solutions will be available to lecturers at www.cambridge.org/9780521858410.
An special feature of the book is the treatment in depth of the theory of spinors in all dimensions and signatures, which is the basis of all developments of supergeometry both in physics and mathematics, especially in quantum field theory and supergravity."--Jacket.
This is a set of lecture notes given by the author at the Universities of G”ttingen and Wroclaw. The text presents the axiomatic approach to field theory and studies in depth the concepts of symmetry and supersymmetry and their associated generators, currents and charges. It is intended as a one-semester course for graduate students in the field of mathematical physics and high energy physics.
This book describes the basic concepts of supersymmetric theories. It is aimed at theorists, experimentalists and cosmologists interested in supersymmetry, and its content is correspondingly divided into three distinct tracks of study. The topics covered include a discussion of the motivation for supersymmetry in fundamental physics, a description of the minimal supersymmetric model as well as models of grand unification and string models, a presentation of the main scenarios forsupersymmetry breaking, including the concepts and results of dynamical breaking. On the astrophysics/cosmology side, the book includes discussions of supersymmetric dark matter candidates, inflation, dark energy, and the cosmological constant problem. Some very basic knowledge of quantum field theoryis needed and extensive appendices (in particular an introduction to the Standard Model of fundamental interactions) allow the reader to refresh and complete their notions.
This book introduces two-dimensional supersymmetric field theories with emphasis on both linear and non-linear sigma models. Complex differential geometry, in connection with supersymmetry, has played a key role in most developments of the last thirty years in quantum field theory and string theory. Both structures introduce a great deal of rigidity compared to the more general categories of non-supersymmetric theories and real differential geometry, allowing for many general conceptual results and detailed quantitative predictions. Two-dimensional (0,2) supersymmetric quantum field theories provide a natural arena for the fruitful interplay between geometry and quantum field theory. These theories play an important role in string theory and provide generalizations, still to be explored fully, of rich structures such as mirror symmetry. They also have applications to non-perturbative four-dimensional physics, for instance as descriptions of surface defects or low energy dynamics of solitonic strings in four-dimensional supersymmetric theories. The purpose of these lecture notes is to acquaint the reader with these fascinating theories, assuming a background in conformal theory, quantum field theory and differential geometry at the beginning graduate level. In order to investigate the profound relations between structures from complex geometry and field theory the text begins with a thorough examination of the basic structures of (0,2) quantum field theory and conformal field theory. Next, a simple class of Lagrangian theories, the (0,2) Landau-Ginzburg models, are discussed, together with the resulting renormalization group flows, dynamics, and symmetries. After a thorough introduction and examination of (0,2) non-linear sigma models, the text introduces linear sigma models that, in particular, provide a unified treatment of non-linear sigma models and Landau-Ginzburg theories. Many exercises, along with discussions of relevant mathematical notions and important open problems in the field, are included in the text.