Download Free Introduction To Stellar Winds Book in PDF and EPUB Free Download. You can read online Introduction To Stellar Winds and write the review.

The first comprehensive introduction to the observations and theories of stellar winds; a long-awaited graduate textbook, written by two founders of the field.
Introduces hydrodynamics to undergraduate students in physics and astrophysics. Stellar winds are a common phenomenon in the life of stars, from the dwarfs like the Sun to the red giants and hot supergiants, constituting one of the basic aspects of modern astrophysics. Stellar winds are a hydrodynamic phenomenon in which circumstellar gases expand towards the interstellar medium. This book presents an elementary introduction to the fundamentals of hydrodynamics with an application to the study of stellar winds. The principles of hydrodynamics have many other applications, so that the book can be used as an introduction to hydrodynamics for students of physics, astrophysics and other related areas.
'Understanding Stellar Evolution' is based on a series of graduate-level courses taught at the University of Washington since 2004, and is written for physics and astronomy students and for anyone with a physics background who is interested in stars. It describes the structure and evolution of stars, with emphasis on the basic physical principles and the interplay between the different processes inside stars such as nuclear reactions, energy transport, chemical mixing, pulsation, mass loss, and rotation. Based on these principles, the evolution of low- and high-mass stars is explained from their formation to their death. In addition to homework exercises for each chapter, the text contains a large number of questions that are meant to stimulate the understanding of the physical principles. An extensive set of accompanying lecture slides is available for teachers in both Keynote(R) and PowerPoint(R) formats.
The most authoritative synthesis of the quantitative spectroscopic analysis of stellar atmospheres This book provides an in-depth and self-contained treatment of the latest advances achieved in quantitative spectroscopic analyses of the observable outer layers of stars and similar objects. Written by two leading researchers in the field, it presents a comprehensive account of both the physical foundations and numerical methods of such analyses. The book is ideal for astronomers who want to acquire deeper insight into the physical foundations of the theory of stellar atmospheres, or who want to learn about modern computational techniques for treating radiative transfer in non-equilibrium situations. It can also serve as a rigorous yet accessible introduction to the discipline for graduate students. Provides a comprehensive, up-to-date account of the field Covers computational methods as well as the underlying physics Serves as an ideal reference book for researchers and a rigorous yet accessible textbook for graduate students An online illustration package is available to professors at press.princeton.edu
Rotation is ubiquitous at each step of stellar evolution, from star formation to the final stages, and it affects the course of evolution, the timescales and nucleosynthesis. Stellar rotation is also an essential prerequisite for the occurrence of Gamma-Ray Bursts. In this book the author thoroughly examines the basic mechanical and thermal effects of rotation, their influence on mass loss by stellar winds, the effects of differential rotation and its associated instabilities, the relation with magnetic fields and the evolution of the internal and surface rotation. Further, he discusses the numerous observational signatures of rotational effects obtained from spectroscopy and interferometric observations, as well as from chemical abundance determinations, helioseismology and asteroseismology, etc. On an introductory level, this book presents in a didactical way the basic concepts of stellar structure and evolution in "track 1" chapters. The other more specialized chapters form an advanced course on the graduate level and will further serve as a valuable reference work for professional astrophysicists.
Donald D. Clayton's Principles of Stellar Evolution and Nucleosynthesis remains the standard work on the subject, a popular textbook for students in astronomy and astrophysics and a rich sourcebook for researchers. The basic principles of physics as they apply to the origin and evolution of stars and physical processes of the stellar interior are thoroughly and systematically set out. Clayton's new preface, which includes commentary and selected references to the recent literature, reviews the most important research carried out since the book's original publication in 1968.
This advanced 1998 textbook on stellar astrophysics provides a comprehensive and self-contained introduction for graduate students.
Compiled by a team of experts, this textbook has been designed for elementary university courses in astronomy and astrophysics. It starts with a detailed discussion of our nearest star, the Sun, and describes how solar physicists have come to understand its internal workings. It then considers how astronomers go about studying the basic physical properties and life-cycles of more distant stars, and culminates with a discussion of the formation of exotic objects such as neutron stars and black holes. Written in an accessible style that avoids complex mathematics, and illustrated in colour throughout, this book is suitable for self-study and will appeal to amateur astronomers as well as undergraduate students. It contains numerous helpful learning features such as boxed summaries, student exercises with full solutions, and a glossary of terms. The book is also supported by a website hosting further teaching materials.
This book provides a comprehensive overview of stellar structure, evolution and basic stellar properties. It includes integrated problems within the chapters, with worked solutions. In the first part of this book, the author presents the basic properties of the stellar interior and describes them thoroughly, along with deriving the main stellar structure equations of temperature, density, pressure and luminosity, among others. The process and application of solving these equations is explained, as well as linking these results with actual observations. The second part of the text describes what happens to a star over time and how to determine this by solving the same equations at different points during a star’s lifetime. The fate of various stars is quite different depending on their masses and this is described in the final parts of the book. This text can be used for an upper level undergraduate course or an introductory graduate course on stellar physics.
Contributors examine the physics of wind origin and physical phenomena in winds, including heliospheric shocks, magnetohydrodynamic turbulence, and kinetic phenomena--and their interactions with surrounding media. Contributions range from studies of the interstellar cloud surrounding the solar system to solar wind interaction with comets.