Download Free Introduction To Steels Book in PDF and EPUB Free Download. You can read online Introduction To Steels and write the review.

Designed as a basic and introductory reference, this book not only addresses stainless steels in the light of their resistance to corrosion for which they are more commonly recognised, but also explains the wide range of other useful properties attributable to the various and specific categories of these alloys. This book is a concise, easy-to-read introduction to one of the most widely used industrial materials. Each chapter explains an important concept related to the selection, application, processing and use of stainless steels. This book is indexed and includes appendices: (1) Identification of Stainless Steels in Service (2) Toxicity of Stainless Steel (3) Table of Equivalent Designations (this is not intended to be complete, but includes the more commonly used stainless steels and the most widely used designation systems). First published in 1965 and updated in 1986, this third edition is a completely new text.
The book briefly describes the structure, properties and applications of various grades of steel, primarily aimed at non-metallurgical students from other engineering streams. The book consists of nine chapters covering most of the important types of steels and their physical metallurgy, microstructure and engineering applications including iron-carbon diagram, heat treatment, surface hardening methods, effect of alloying, specific applications, selection of materials, case studies and so forth. The book also contains subjective and objective questions aimed at exam preparation. Key Features Exclusive title aimed at introduction to steels for non-metallurgy audience Includes microstructure, composition, and properties of all the most commonly used steels Describes the heat treatments and the required alloying additions to process steel for the intended applications Discusses effects of alloying elements on steel Explores development of steels for specialized areas such as the automobile, aerospace, and nuclear industries
Updated and translated by André Luiz V. da Costa e Silva This book is a combination of a metallographic atlas for steels and cast irons and an introductory textbook covering the fundamentals of phase transformations and heat treatment of these materials. Every important stage of processing, from casting to cold working is clearly discussed and copiously illustrated with metallographs that show the obtained structures, both desired and those achieved when deviations occur. First published in 1951 by Professor Hubertus Colpaert from the Institute for Technological Research (IPT) of São Paulo, Brazil, this book became one of the most important Brazilian references for professionals interested in the processing, treatment, and application of steels and cast irons. In the Fourth Edition and English translation, updated and translated by Professor André Luiz V. da Costa e Silva, the concept of the of the original edition was preserved while the important developments of recent decades, both in metallographic characterization and in steel and iron products, as well as progress in the understanding of the transformations that made the extraordinary developments of these alloys possible, were added. Most metallographs are of actual industrial materials and a large number originate from industry leaders or laboratories at the forefront of steel and iron development. As steel continues to be the most widely used metallic material in the world, Metallography of Steels continues to be an essential reference for students, metallographers, and engineers interested in understanding processing-properties-structure relationships of the material. The balance between theoretical and applied information makes this book a valuable companion for even experienced steel practitioners.
This highly illustrated resource covers the characteristics, properties, specifications, heat treatment, and application of steels for engineering students, non-metallurgical engineers, and technicians. There’s a saying that “steel makes the world.” From a tiny pin in a sewing kit to home appliances to cars to bridges, steel is everywhere. While there are numerous books on steel, few, if any, address the true application of steels in a practical manner. This book was written to fill that gap. Divided into four parts, Steel Metallurgy: Properties, Specifications, and Applications covers the basic metallurgical facts and characteristics, properties, standards, and grades of steel. Classifications of steel based on standards and structural engineering are then discussed, followed by heat treatment and welding of steels. The book then focuses on the application of steel and its reliability and failures, and shows, through numerous illustrations and case studies, how it’s processed and used for various purposes. Armed with the information in this book, metallurgical and engineering students will become truly “industry ready.” Case studies and illustrations show steel being used in practical, everyday applications, making the book user friendly yet comprehensive Lays the ground work for steel selection, and discusses the methods of selection Contains appendices with steel grades, compositions, and standards; physical data and conversions; temperature, hardness, and work/energy conversion tables Includes a glossary of important metallurgical terms
Automotive Steels: Design, Metallurgy, Processing and Applications explores the design, processing, metallurgy, and applications of automotive steels. While some sheet steels are produced routinely in high volume today, there have been significant advances in the use of steel in the automotive industry. This book presents these metallurgical and application aspects in a way that is not available in the current literature. The editors have assembled an international team of experts who discuss recent developments and future prospects for automotive steels, compiling essential reading for both academic and industrial metallurgists, automotive design engineers, and postgraduate students attending courses on the metallurgy of automotive materials. - Presents recent developments on the design, metallurgy, processing, and applications of automotive steels - Discusses automotive steels that are currently in the early stages of research, such as low-density and high modulus steels that are driving future development - Covers traditional steels, advanced high strength steels, elevated Mn steels and ferrous composite materials
Welding and Joining of Advanced High Strength Steels (AHSS): The Automotive Industry discusses the ways advanced high strength steels (AHSS) are key to weight reduction in sectors such as automotive engineering. It includes a discussion on how welding can alter the microstructure in the heat affected zone, producing either excessive hardening or softening, and how these local changes create potential weaknesses that can lead to failure. This text reviews the range of welding and other joining technologies for AHSS and how they can be best used to maximize the potential of AHSS. - Reviews the properties and manufacturing techniques of advanced high strength steels (AHSS) - Examines welding processes, performance, and fatigue in AHSS - Focuses on AHSS welding and joining within the automotive industry
This book provides a solid overview of the important metallurgical concepts related to the microstructures of irons and steels, and it provides detailed guidelines for the proper metallographic techniques used to reveal, capture, and understand microstructures. This book provides clearly written explanations of important concepts, and step-by-step instructions for equipment selection and use, microscopy techniques, specimen preparation, and etching. Dozens of concise and helpful “metallographic tips” are included in the chapters on laboratory practices and specimen preparation. The book features over 500 representative microstructures, with discussions of how the structures can be altered by heat treatment and other means. A handy index to these images is provided, so the book can also be used as an atlas of iron and steel microstructures.
Steel Making is designed to give students a strong grounding in the theory and state-of-the-art practice of production of steels. The book is primarily focused to meet the needs of undergraduate metallurgical students and candidates for associate membership examinations of professional bodies (AMIIM, AMIE). Besides, for all engineering professionals working in steel plants who need to understand the basic principles of steel making, the text provides a sound introduction to the subject. Beginning with a brief introduction to the historical perspective and current status of steel making together with the reasons for obsolescence of Bessemer converter and open hearth processes, the book moves on to : • elaborate the physicochemical principles involved in steel making • explain the operational principles and practices of the modern processes of primary steel making (LD converter, Q-BOP process, and electric furnace process) • provide a summary of the developments in secondary refining of steels • discuss principles and practices of ingot casting and continuous casting of steels • emphasize an increasing need to protect our environment and utilize waste energy • explain transport processes, simulation, and modelling relevant to the developments in steel technology. The book provides considerable information in an easily assimilable form and makes an ideal introduction to the complex subject of steel technology.
George Krauss, University Emeritus Professor, Colorado School of Mines and author of the best-selling ASM book Steels: Processing, Structure, and Performance, discusses some of the important additions and updates to the new second edition.