Download Free Introduction To Statistical Optics Book in PDF and EPUB Free Download. You can read online Introduction To Statistical Optics and write the review.

Authoritative introduction covers the role of Green's function in mathematical physics, essential differences between spatial and time filters, fundamental relations of paraxial optics, and effects of aberration terms on image formation. "An excellent book; well-organized, and well-written." — Journal of the Optical Society of America. 80 illustrations. 1963 edition.
Authoritative introduction covers Green's function in mathematical physics, essential differences between spatial and time filters, fundamental relations of paraxial optics, and effects of aberration terms on image formation. 1963 edition.
This book discusses statistical methods that are useful for treating problems in modern optics, and the application of these methods to solving a variety of such problems This book covers a variety of statistical problems in optics, including both theory and applications. The text covers the necessary background in statistics, statistical properties of light waves of various types, the theory of partial coherence and its applications, imaging with partially coherent light, atmospheric degradations of images, and noise limitations in the detection of light. New topics have been introduced in the second edition, including: Analysis of the Vander Pol oscillator model of laser light Coverage on coherence tomography and coherence multiplexing of fiber sensors An expansion of the chapter on imaging with partially coherent light, including several new examples An expanded section on speckle and its properties New sections on the cross-spectrum and bispectrum techniques for obtaining images free from atmospheric distortions A new section on imaging through atmospheric turbulence using coherent light The addition of the effects of “read noise” to the discussions of limitations encountered in detecting very weak optical signals A number of new problems and many new references have been added Statistical Optics, Second Edition is written for researchers and engineering students interested in optics, physicists and chemists, as well as graduate level courses in a University Engineering or Physics Department.
This monograph overviews classic and recent developments in theoretical statistical optics in connection with stationary and non-stationary (pulsed) optical source characterization and modeling, discusses various phenomena occurring with random light propagating in free space, on its interaction with optical systems, extended media and particulate collections. The text includes scalar, beam-like and general electromagnetic treatment of light. A brief statistical description of four fundamental experiments relating to random light: spatial and temporal field interference, intensity interferometry and phase conjugation, is also included in order to relate the analytical descriptions with practical observations.Rigorous mathematical methods for statistical manipulation of light sources useful for remote shaping of its various average properties, enhanced image resolution, optimized transmission in random media and for other applications are introduced. For illustration of efficient ways for manipulation of light polarization the generalized Stokes-Mueller calculus is applied for description of interaction of beam-like fields with classic and currently popular devices of polarization optics, including a spatial light modulator.Random light plays a special role in the image formation process. Three imaging modalities including the classic intensity-based system with structured source correlations, the polarization-based imaging system and the ghost interference approach are discussed in detail.Theoretical aspects of potential scattering of light from weakly scattering media are considered under a very broad range of assumptions: scalar/electromagnetic incident light, deterministic/random light/media, single/particulate media. Then, problems and methods in light characterization on interaction with extended, turbulent-like natural media, such as the Earth's atmosphere, oceans and soft bio-tissues that are currently widely used for communication, remote sensing and imaging purposes in these media, are provided.
Scientists and engineers in optics are increasingly confronted with problems that are of a random nature and that require a working knowledge of probability and statistics for their solution. This book develops these subjects within the context of optics, using a problem-solving approach. All methods are explicitly derived and can be traced back to three simple axioms given at the outset. This third edition contains many new applications to optical and physical phenomena, including a method of exactly estimating probability laws.
This renowned text applies the powerful mathematical methods of fourier analysis to the analysis and synthesis of optical systems. These ubiquitous mathematical tools provide unique insights into the capabilities and limitations of optical systems in both imaging and information processing and lead to many fascinating applications, including the field of holography.
This is the first of a two-volume presentation on current research problems in quantum optics, and will serve as a standard reference in the field for many years to come. The book provides an introduction to the methods of quantum statistical mechanics used in quantum optics and their application to the quantum theories of the single-mode laser and optical bistability. The generalized representations of Drummond and Gardiner are discussed together with the more standard methods for deriving Fokker-Planck equations.
A vivid, hands-on discussion of the statistical methods in imaging, optics, and photonics applications In the field of imaging science, there is a growing need for students and practitioners to be equipped with the necessary knowledge and tools to carry out quantitative analysis of data. Providing a self-contained approach that is not too heavily statistical in nature, Statistics for Imaging, Optics, and Photonics presents necessary analytical techniques in the context of real examples from various areas within the field, including remote sensing, color science, printing, and astronomy. Bridging the gap between imaging, optics, photonics, and statistical data analysis, the author uniquely concentrates on statistical inference, providing a wide range of relevant methods. Brief introductions to key probabilistic terms are provided at the beginning of the book in order to present the notation used, followed by discussions on multivariate techniques such as: Linear regression models, vector and matrix algebra, and random vectors and matrices Multivariate statistical inference, including inferences about both mean vectors and covariance matrices Principal components analysis Canonical correlation analysis Discrimination and classification analysis for two or more populations and spatial smoothing Cluster analysis, including similarity and dissimilarity measures and hierarchical and nonhierarchical clustering methods Intuitive and geometric understanding of concepts is emphasized, and all examples are relatively simple and include background explanations. Computational results and graphs are presented using the freely available R software, and can be replicated by using a variety of software packages. Throughout the book, problem sets and solutions contain partial numerical results, allowing readers to confirm the accuracy of their approach; and a related website features additional resources including the book's datasets and figures. Statistics for Imaging, Optics, and Photonics is an excellent book for courses on multivariate statistics for imaging science, optics, and photonics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for professionals working in imaging, optics, and photonics who carry out data analyses in their everyday work.
Presents a fully updated, self-contained textbook covering the core theory and practice of both classical and modern optical microscopy techniques.
An accessible, well presented introduction to the theory of optical aberrations, covering key topics that are often missing from comparable books.