Download Free Introduction To Sonar Technology Book in PDF and EPUB Free Download. You can read online Introduction To Sonar Technology and write the review.

Sonar and Underwater Acoustics brings together all the concepts necessary for designers and users of sonar systems. Unlike other books on this subject, which are often too specialized, this book is accessible to a wider audience. The first part focuses on the acoustic environment, antenna structures, and electric acoustic interface. The latter provides knowledge required to design, as well as the development and implementation of chain processes for an active sonar from the conditioning input to output processing. The reader will find a comprehensive range of all problems encountered in underwater acoustics for a sonar application, from physical phenomena governing the environment and the corresponding constraints, through to the technical definition of transducers and antennas, and the types of signal processing involved. In one section, measures in underwater acoustics are also proposed.
The demand to explore the largest and also one of the richest parts of our planet, the advances in signal processing promoted by an exponential growth in computation power and a thorough study of sound propagation in the underwater realm, have lead to remarkable advances in sonar technology in the last years.The work on hand is a sum of knowledge of several authors who contributed in various aspects of sonar technology. This book intends to give a broad overview of the advances in sonar technology of the last years that resulted from the research effort of the authors in both sonar systems and their applications. It is intended for scientist and engineers from a variety of backgrounds and even those that never had contact with sonar technology before will find an easy introduction with the topics and principles exposed here.
Offering complete and comprehensive coverage of modern sonar spectrum system analysis, Underwater Acoustics: Analysis, Design and Performance of Sonar provides a state-of-the-art introduction to the subject and has been carefully structured to offer a much-needed update to the classic text by Urick. Expanded to included computational approaches to the topic, this book treads the line between the highly theoretical and mathematical texts and the more populist, non-mathematical books that characterize the existing literature in the field. The author compares and contrasts different techniques for sonar design, analysis and performance prediction and includes key experimental and theoretical results, pointing the reader towards further detail with extensive references. Practitioners in the field of sonar design, analysis and performance prediction as well as graduate students and researchers will appreciate this new reference as an invaluable and timely contribution to the field. Chapters include the sonar equation, radiated, self and ambient noise, active sonar sources, transmission loss, reverberation, transducers, active target strength, statistical detection theory, false alarms, contacts and targets, variability and uncertainty, modelling detections and tactical decision aids, cumulative probability of detection, tracking target motion analysis and localization, and design and evaluation of sonars
Presented in a clear and concise way as an introductory text and practical handbook, the book provides the basic physical phenomena governing underwater acoustical waves, propagation, reflection, target backscattering and noise. It covers the general features of sonar systems, transducers and arrays, signal processing and performance evaluation. It provides an overview of today's applications, presenting the working principles of the various systems. From the reviews: "Presented in a clear and concise way as an introductory text and practical handbook, the book provides the basic physical phenomena governing underwater acoustical waves, propagation, reflection, target backscattering and noise. ⦠It provides an overview of todayâs applications, presenting the working principles of the various systems." (Oceanis, Vol. 27 (3-4), 2003) "This book is a general survey of Underwater Acoustics, intended to make the subject âas easily accessible as possible, with a clear emphasis on applications.â In this the author has succeeded, with a wide variety of subjects presented with minimal derivation ⦠. There is an emphasis on technology and on intuitive physical explanation ⦠." (Darrell R. Jackson, Journal of the Acoustic Society of America, Vol. 115 (2), February, 2004) "This is an exciting new scientific publication. It is timely and welcome ⦠. Furthermore, it is up to date and readable. It is well researched, excellently published and ranks with earlier books in this discipline ⦠. Many persons in the marine science field including acousticians, hydrographers, oceanographers, fisheries scientists, engineers, educators, students ⦠and equipment manufacturers will benefit greatly by reading all or part of this text. The author is to be congratulated on his fine contribution ⦠." (Stephen B. MacPhee, International Hydrographic Review, Vol. 4 (2), 2003)
This discussion of sonar signal processing bridges a number of related fields, including acoustic propagation in the medium, detection and estimation theory, filter theory, digital filtering, sensor array processing, spectral analysis, fast transforms and digital signal processing. The book begins with a discussion of the topics of analogue signalling conditioning, digital filtering, and the calculation of the discrete Fourier transform. Other topics discussed include analogue filters and analogue-to-digital conversion, finite impulse and infinite impulse response digital filters, and multirate processing techniques.
The book is an edited collection of research articles covering the current state of sonar systems, the signal processing methods and their applications prepared by experts in the field. The first section is dedicated to the theory and applications of innovative synthetic aperture, interferometric, multistatic sonars and modeling and simulation. Special section in the book is dedicated to sonar signal processing methods covering: passive sonar array beamforming, direction of arrival estimation, signal detection and classification using DEMON and LOFAR principles, adaptive matched field signal processing. The image processing techniques include: image denoising, detection and classification of artificial mine like objects and application of hidden Markov model and artificial neural networks for signal classification. The biology applications include the analysis of biosonar capabilities and underwater sound influence on human hearing. The marine science applications include fish species target strength modeling, identification and discrimination from bottom scattering and pelagic biomass neural network estimation methods. Marine geology has place in the book with geomorphological parameters estimation from side scan sonar images. The book will be interesting not only for specialists in the area but also for readers as a guide in sonar systems principles of operation, signal processing methods and marine applications.
"Digital Sonar Design in Underwater Acoustics Principles and Applications" provides comprehensive and up-to-date coverage of research on sonar design, including the basic theory and techniques of digital signal processing, basic concept of information theory, ocean acoustics, underwater acoustic signal propagation theory, and underwater signal processing theory. This book discusses the general design procedure and approaches to implementation, the design method, system simulation theory and techniques, sonar tests in the laboratory, lake and sea, and practical validation criteria and methods for digital sonar design. It is intended for researchers in the fields of underwater signal processing and sonar design, and also for navy officers and ocean explorers. Qihu Li is a professor at the Institute of Acoustics, Chinese Academy of Sciences, and an academician of the Chinese Academy of Sciences.
Underwater Acoustic Modeling and Simulation, Fourth Edition continues to provide the most authoritative overview of currently available propagation, noise, reverberation, and sonar-performance models. This fourth edition of a bestseller discusses the fundamental processes involved in simulating the performance of underwater acoustic systems and emphasizes the importance of applying the proper modeling resources to simulate the behavior of sound in virtual ocean environments. New to the Fourth Edition Extensive new material that addresses recent advances in inverse techniques and marine-mammal protection Problem sets in each chapter Updated and expanded inventories of available models Designed for readers with an understanding of underwater acoustics but who are unfamiliar with the various aspects of modeling, the book includes sufficient mathematical derivations to demonstrate model formulations and provides guidelines for selecting and using the models. Examples of each type of model illustrate model formulations, model assumptions, and algorithm efficiency. Simulation case studies are also included to demonstrate practical applications. Providing a thorough source of information on modeling resources, this book examines the translation of our physical understanding of sound in the sea into mathematical models that simulate acoustic propagation, noise, and reverberation in the ocean. The text shows how these models are used to predict and diagnose the performance of complex sonar systems operating in the undersea environment.
This book describes, using first-person accounts, the history of the development in the Soviet Union and, later, in Russia of an extremely important technical field and how that history was influenced by WWI, WWII, and the Cold War, by government bureaucracy, in both positive and negative ways, by the economic collapse of the Soviet Union, and most importantly, by the dedicated efforts of vast numbers of individuals, including some of the greatest scientific minds of the 20th century. It will make fascinating reading for engineers and scientists who were engaged in similar work in the West, for historians of the Cold War and of the Soviet Union, and for present day researchers who need to learn about Russian scientific contributions.Because of its importance to national security, much of the research and development effort in underwater acoustics was classified during the Cold War, both in the Soviet Union and the United States. This book presents the first declassified accounts of the development of numerous hydroacoustic systems by individuals having first-hand knowledge of the development efforts.