Download Free Introduction To Quantum Group And Integrable Massive Models Of Quantum Field Theory Book in PDF and EPUB Free Download. You can read online Introduction To Quantum Group And Integrable Massive Models Of Quantum Field Theory and write the review.

The Proceedings consists of 6 lectures each from Prof L Takhtajan and Prof F Smirnov which were presented during the workshop.
The monograph summarizes recent achievements in the calculation of matrix elements of local operators (form factors) for completely integrable models. Particularly, it deals with sine-Gordon, chiral Gross-Neven and O(3) nonlinear s models. General requirements on form factors are formulated and explicit formulas for form factors of most fundamental local operators are presented for the above mentioned models.
Proceedings of a NATO ARW held in Como, Italy, September 14-19, 1992
Chapter 1 The algebraic prerequisites for the book are covered here and in the appendix. This chapter should be used as reference material and should be consulted as needed. A systematic treatment of algebras, coalgebras, bialgebras, Hopf algebras, and represen tations of these objects to the extent needed for the book is given. The material here not specifically cited can be found for the most part in [Sweedler, 1969] in one form or another, with a few exceptions. A great deal of emphasis is placed on the coalgebra which is the dual of n x n matrices over a field. This is the most basic example of a coalgebra for our purposes and is at the heart of most algebraic constructions described in this book. We have found pointed bialgebras useful in connection with solving the quantum Yang-Baxter equation. For this reason we develop their theory in some detail. The class of examples described in Chapter 6 in connection with the quantum double consists of pointed Hopf algebras. We note the quantized enveloping algebras described Hopf algebras. Thus for many reasons pointed bialgebras are elsewhere are pointed of fundamental interest in the study of the quantum Yang-Baxter equation and objects quantum groups.
This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists, at levels ranging from advanced undergraduate students to professional scientists. The book bridges the acknowledged gap between the different languages used by mathematicians and physicists. For students of mathematics the author shows that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which goes beyond the usual curriculum in physics.
This volume contains the lectures given by the three speakers, M Jimbo, P P Kulish and E K Sklyanin, who are outstanding experts in their field. It is essential reading to those working in the fields of Quantum Groups, and Integrable Systems.
Since they first arose in the 1970s and early 1980s, quantum groups have proved to be of great interest to mathematicians and theoretical physicists. The theory of quantum groups is now well established as a fascinating chapter of representation theory, and has thrown new light on many different topics, notably low-dimensional topology and conformal field theory. The goal of this book is to give a comprehensive view of quantum groups and their applications. The authors build on a self-contained account of the foundations of the subject and go on to treat the more advanced aspects concisely and with detailed references to the literature. Thus this book can serve both as an introduction for the newcomer, and as a guide for the more experienced reader. All who have an interest in the subject will welcome this unique treatment of quantum groups.
Quantum groups and quantum algebras as well as non-commutative differential geometry are important in mathematics and considered to be useful tools for model building in statistical and quantum physics. This book, addressing scientists and postgraduates, contains a detailed and rather complete presentation of the algebraic framework. Introductory chapters deal with background material such as Lie and Hopf superalgebras, Lie super-bialgebras, or formal power series. Great care was taken to present a reliable collection of formulae and to unify the notation, making this volume a useful work of reference for mathematicians and mathematical physicists.
Quantum groups are not groups at all, but special kinds of Hopf algebras of which the most important are closely related to Lie groups and play a central role in the statistical and wave mechanics of Baxter and Yang. Those occurring physically can be studied as essentially algebraic and closely related to the deformation theory of algebras (commutative, Lie, Hopf, and so on). One of the oldest forms of algebraic quantization amounts to the study of deformations of a commutative algebra A (of classical observables) to a noncommutative algebra A*h (of operators) with the infinitesimal deformation given by a Poisson bracket on the original algebra A. This volume grew out of an AMS--IMS--SIAM Joint Summer Research Conference, held in June 1990 at the University of Massachusetts at Amherst. The conference brought together leading researchers in the several areas mentioned and in areas such as ``q special functions'', which have their origins in the last century but whose relevance to modern physics has only recently been understood. Among the advances taking place during the conference was Majid's reconstruction theorem for Drinfel$'$d's quasi-Hopf algebras. Readers will appreciate this snapshot of some of the latest developments in the mathematics of quantum groups and deformation theory.
A self-contained introduction to the cohomology theory of Lie groups and some of its applications in physics.