Download Free Introduction To Psychometric Theory Book in PDF and EPUB Free Download. You can read online Introduction To Psychometric Theory and write the review.

This new text provides a state-of the-art introduction to educational and psychological testing and measurement theory that reflects many intellectual developments of the past two decades. The book introduces psychometric theory using a latent variable modeling (LVM) framework and emphasizes interval estimation throughout, so as to better prepare readers for studying more advanced topics later in their careers. Featuring numerous examples, it presents an applied approach to conducting testing and measurement in the behavioral, social, and educational sciences. Readers will find numerous tips on how to use test theory in today’s actual testing situations. To reflect the growing use of statistical software in psychometrics, the authors introduce the use of Mplus after the first few chapters. IBM SPSS, SAS, and R are also featured in several chapters. Software codes and associated outputs are reviewed throughout to enhance comprehension. Essentially all of the data used in the book are available on the website. In addition instructors will find helpful PowerPoint lecture slides and questions and problems for each chapter. The authors rely on LVM when discussing fundamental concepts such as exploratory and confirmatory factor analysis, test theory, generalizability theory, reliability and validity, interval estimation, nonlinear factor analysis, generalized linear modeling, and item response theory. The varied applications make this book a valuable tool for those in the behavioral, social, educational, and biomedical disciplines, as well as in business, economics, and marketing. A brief introduction to R is also provided. Intended as a text for advanced undergraduate and/or graduate courses in psychometrics, testing and measurement, measurement theory, psychological testing, and/or educational and/or psychological measurement taught in departments of psychology, education, human development, epidemiology, business, and marketing, it will also appeal to researchers in these disciplines. Prerequisites include an introduction to statistics with exposure to regression analysis and ANOVA. Familiarity with SPSS, SAS, STATA, or R is also beneficial. As a whole, the book provides an invaluable introduction to measurement and test theory to those with limited or no familiarity with the mathematical and statistical procedures involved in measurement and testing.
This new text provides a state-of the-art introduction to educational and psychological testing and measurement theory that reflects many intellectual developments of the past two decades. The book introduces psychometric theory using a latent variable modeling (LVM) framework and emphasizes interval estimation throughout, so as to better prepare readers for studying more advanced topics later in their careers. Featuring numerous examples, it presents an applied approach to conducting testing and measurement in the behavioral, social, and educational sciences. Readers will find numerous tips on how to use test theory in today’s actual testing situations. To reflect the growing use of statistical software in psychometrics, the authors introduce the use of Mplus after the first few chapters. IBM SPSS, SAS, and R are also featured in several chapters. Software codes and associated outputs are reviewed throughout to enhance comprehension. Essentially all of the data used in the book are available on the website. In addition instructors will find helpful PowerPoint lecture slides and questions and problems for each chapter. The authors rely on LVM when discussing fundamental concepts such as exploratory and confirmatory factor analysis, test theory, generalizability theory, reliability and validity, interval estimation, nonlinear factor analysis, generalized linear modeling, and item response theory. The varied applications make this book a valuable tool for those in the behavioral, social, educational, and biomedical disciplines, as well as in business, economics, and marketing. A brief introduction to R is also provided. Intended as a text for advanced undergraduate and/or graduate courses in psychometrics, testing and measurement, measurement theory, psychological testing, and/or educational and/or psychological measurement taught in departments of psychology, education, human development, epidemiology, business, and marketing, it will also appeal to researchers in these disciplines. Prerequisites include an introduction to statistics with exposure to regression analysis and ANOVA. Familiarity with SPSS, SAS, STATA, or R is also beneficial. As a whole, the book provides an invaluable introduction to measurement and test theory to those with limited or no familiarity with the mathematical and statistical procedures involved in measurement and testing.
Grounded in current knowledge and professional practice, this book provides up-to-date coverage of psychometric theory, methods, and interpretation of results. Essential topics include measurement and statistical concepts, scaling models, test design and development, reliability, validity, factor analysis, item response theory, and generalizability theory. Also addressed are norming and test equating, topics not typically covered in traditional psychometrics texts. Examples drawn from a dataset on intelligence testing are used throughout the book, elucidating the assumptions underlying particular methods and providing SPSS (or alternative) syntax for conducting analyses. The companion website presents datasets for all examples as well as PowerPoint slides of figures and key concepts. Pedagogical features include equation boxes with explanations of statistical notation, and end-of-chapter glossaries. The Appendix offers extensions of the topical chapters with example source code from SAS, SPSS, IRTPRO, BILOG-MG, PARSCALE, TESTFACT, and DIMTEST.
Using a meaning-based approach that emphasizes the “why” over the “how to,” Psychometrics: An Introduction provides thorough coverage of fundamental issues in psychological measurement. Author R. Michael Furr discusses traditional psychometric perspectives and issues including reliability, validity, dimensionality, test bias, and response bias as well as advanced procedures and perspectives including item response theory and generalizability theory. The substantially updated Third Edition includes broader and more in-depth coverage with new references, a glossary summarizing over 200 key terms, and expanded suggested readings consisting of highly relevant papers to enhance the book’s overall accessibility, scope, and usability.
The classic text is Psychometric Theory. Like the previous edition, this text is designed as a comprehensive text in measurement for researchers and for use in graduate courses in psychology, education and areas of business such as management and marketing. It is intended to consider the broad measurement problems that arise in these areas and is written for a reader who needs only a basic background in statistics to comprehend the material. It also combines classical procedures that explain variance with modern inferential procedures.
This textbook describes the broadening methodology spectrum of psychological measurement in order to meet the statistical needs of a modern psychologist. The way statistics is used, and maybe even perceived, in psychology has drastically changed over the last few years; computationally as well as methodologically. R has taken the field of psychology by storm, to the point that it can now safely be considered the lingua franca for statistical data analysis in psychology. The goal of this book is to give the reader a starting point when analyzing data using a particular method, including advanced versions, and to hopefully motivate him or her to delve deeper into additional literature on the method. Beginning with one of the oldest psychometric model formulations, the true score model, Mair devotes the early chapters to exploring confirmatory factor analysis, modern test theory, and a sequence of multivariate exploratory method. Subsequent chapters present special techniques useful for modern psychological applications including correlation networks, sophisticated parametric clustering techniques, longitudinal measurements on a single participant, and functional magnetic resonance imaging (fMRI) data. In addition to using real-life data sets to demonstrate each method, the book also reports each method in three parts-- first describing when and why to apply it, then how to compute the method in R, and finally how to present, visualize, and interpret the results. Requiring a basic knowledge of statistical methods and R software, but written in a casual tone, this text is ideal for graduate students in psychology. Relevant courses include methods of scaling, latent variable modeling, psychometrics for graduate students in Psychology, and multivariate methods in the social sciences.
In An Introduction to Psychological Assessment and Psychometrics, Keith Coaley outlines the key ingredients of psychological assessment, providing case studies to illustrate their application, making it an ideal textbook for courses on psychometrics or psychological assessment. New to the Second Edition: Includes occupational and educational settings Covers ethical and professional issues with a strong practical focus Case study material related to work selection settings End of chapter self-assessments to facilitate students’ progress Compliant with the latest BPS Certificate of Testing curriculum
A systematic, innovative introduction to the field of network analysis, Network Psychometrics with R: A Guide for Behavioral and Social Scientists provides a comprehensive overview of and guide to both the theoretical foundations of network psychometrics as well as modelling techniques developed from this perspective. Written by pioneers in the field, this textbook showcases cutting-edge methods in an easily accessible format, accompanied by problem sets and code. After working through this book, readers will be able to understand the theoretical foundations behind network modelling, infer network topology, and estimate network parameters from different sources of data. This book features an introduction on the statistical programming language R that guides readers on how to analyse network structures and their stability using R. While Network Psychometrics with R is written in the context of social and behavioral science, the methods introduced in this book are widely applicable to data sets from related fields of study. Additionally, while the text is written in a non-technical manner, technical content is highlighted in textboxes for the interested reader. Network Psychometrics with R is ideal for instructors and students of undergraduate and graduate level courses and workshops in the field of network psychometrics as well as established researchers looking to master new methods. This book is accompanied by a companion website with resources for both students and lecturers.
Today psychometrics plays an increasingly important role in all our lives as testing and assessment occurs from preschool until retirement. This book introduces the reader to the subject in all its aspects, ranging from its early history, school examinations, how to construct your own test, controversies about IQ and recent developments in testing on the internet. In Part one of Modern Psychometrics, Rust and Golombok outline the history of the field and discuss central theoretical issues such as IQ, personality and integrity testing and the impact of computer technology and the internet. In Part two a practical step-by-step guide to the development of a psychometric test is provided. This will enable anyone wishing to develop their own test to plan, design, construct and validate it to a professional standard. This third edition has been extensively updated and expanded to take into account recent developments in the field, making it the ideal companion for those studying for the British Psychological Society’s Certificates of Competence in Testing. Modern Psychometrics combines an up to date scientific approach to the subject with a full consideration of the political and ethical issues involved in the large scale implementation of psychometrics testing in today’s highly networked society, particularly in terms of issues of diversity and internationalism. It will be useful to students and practictioners at all levels who are interested in psychometrics.
Focusing on the conceptual understanding of psychometric issues such as validity and reliability this textbook introduces psychometric principles at a level that goes into more detail than introductory undergraduate texts, yet also more intuitive than more technical publications intended for postgraduate level. By emphasizing conceptual development and practical significance over mathematical proofs, this book assists students in appreciating how measurement problems can be addressed and why it is important to address them.