Download Free Introduction To Numerical Computations Book in PDF and EPUB Free Download. You can read online Introduction To Numerical Computations and write the review.

This book serves as a set of lecture notes for a senior undergraduate level course on the introduction to numerical computation, which was developed through 4 semesters of teaching the course over 10 years. The book requires minimum background knowledge from the students, including only a three-semester of calculus, and a bit on matrices.The book covers many of the introductory topics for a first course in numerical computation, which fits in the short time frame of a semester course. Topics range from polynomial approximations and interpolation, to numerical methods for ODEs and PDEs. Emphasis was made more on algorithm development, basic mathematical ideas behind the algorithms, and the implementation in Matlab.The book is supplemented by two sets of videos, available through the author's YouTube channel. Homework problem sets are provided for each chapter, and complete answer sets are available for instructors upon request.The second edition contains a set of selected advanced topics, written in a self-contained manner, suitable for self-learning or as additional material for an honored version of the course. Videos are also available for these added topics.
Computer Science and Applied Mathematics: Introduction to Numerical Computations, Second Edition introduces numerical algorithms as they are used in practice. This edition covers the usual topics contained in introductory numerical analysis textbooks that include all of the well-known and most frequently used algorithms for interpolation and approximation, numerical differentiation and integration, solution of linear systems and nonlinear equations, and solving ordinary differential equations. A complete discussion of computer arithmetic, problems that arise in the computer evaluation of functions, and cubic spline interpolation are also provided. This text likewise discusses the Newton formulas for interpolation and adaptive methods for integration. The level of this book is suitable for advanced undergraduate students and readers with elementary mathematical background.
Praise for the First Edition ". . . outstandingly appealing with regard to its style, contents, considerations of requirements of practice, choice of examples, and exercises." —Zentrablatt Math ". . . carefully structured with many detailed worked examples . . ." —The Mathematical Gazette ". . . an up-to-date and user-friendly account . . ." —Mathematika An Introduction to Numerical Methods and Analysis addresses the mathematics underlying approximation and scientific computing and successfully explains where approximation methods come from, why they sometimes work (or don't work), and when to use one of the many techniques that are available. Written in a style that emphasizes readability and usefulness for the numerical methods novice, the book begins with basic, elementary material and gradually builds up to more advanced topics. A selection of concepts required for the study of computational mathematics is introduced, and simple approximations using Taylor's Theorem are also treated in some depth. The text includes exercises that run the gamut from simple hand computations, to challenging derivations and minor proofs, to programming exercises. A greater emphasis on applied exercises as well as the cause and effect associated with numerical mathematics is featured throughout the book. An Introduction to Numerical Methods and Analysis is the ideal text for students in advanced undergraduate mathematics and engineering courses who are interested in gaining an understanding of numerical methods and numerical analysis.
On the occasion of this new edition, the text was enlarged by several new sections. Two sections on B-splines and their computation were added to the chapter on spline functions: Due to their special properties, their flexibility, and the availability of well-tested programs for their computation, B-splines play an important role in many applications. Also, the authors followed suggestions by many readers to supplement the chapter on elimination methods with a section dealing with the solution of large sparse systems of linear equations. Even though such systems are usually solved by iterative methods, the realm of elimination methods has been widely extended due to powerful techniques for handling sparse matrices. We will explain some of these techniques in connection with the Cholesky algorithm for solving positive definite linear systems. The chapter on eigenvalue problems was enlarged by a section on the Lanczos algorithm; the sections on the LR and QR algorithm were rewritten and now contain a description of implicit shift techniques. In order to some extent take into account the progress in the area of ordinary differential equations, a new section on implicit differential equa tions and differential-algebraic systems was added, and the section on stiff differential equations was updated by describing further methods to solve such equations.
A logically organized advanced textbook, which turns the reader into an active participant by asking questions, hinting, giving direct recommendations, comparing different methods, and discussing "pessimistic" and "optimistic" approaches to numerical analysis. Advanced students and graduate students majoring in computer science, physics and mathematics will find this book helpful.
This textbook provides an introduction to constructive methods that provide accurate approximations to the solution of numerical problems using MATLAB.
This book provides an extensive introduction to numerical computing from the viewpoint of backward error analysis. The intended audience includes students and researchers in science, engineering and mathematics. The approach taken is somewhat informal owing to the wide variety of backgrounds of the readers, but the central ideas of backward error and sensitivity (conditioning) are systematically emphasized. The book is divided into four parts: Part I provides the background preliminaries including floating-point arithmetic, polynomials and computer evaluation of functions; Part II covers numerical linear algebra; Part III covers interpolation, the FFT and quadrature; and Part IV covers numerical solutions of differential equations including initial-value problems, boundary-value problems, delay differential equations and a brief chapter on partial differential equations. The book contains detailed illustrations, chapter summaries and a variety of exercises as well some Matlab codes provided online as supplementary material. “I really like the focus on backward error analysis and condition. This is novel in a textbook and a practical approach that will bring welcome attention." Lawrence F. Shampine A Graduate Introduction to Numerical Methods and Backward Error Analysis” has been selected by Computing Reviews as a notable book in computing in 2013. Computing Reviews Best of 2013 list consists of book and article nominations from reviewers, CR category editors, the editors-in-chief of journals, and others in the computing community.
P. 311.