Download Free Introduction To Molecular Dynamics And Chemical Kinetics Book in PDF and EPUB Free Download. You can read online Introduction To Molecular Dynamics And Chemical Kinetics and write the review.

A comprehensive, in-depth presentation of theoretical underpinnings and mathematical techniques This is the first book of its kind to combine all the theories of molecular reaction dynamics and chemical kinetics in a single source. It provides a sophisticated treatment of the material that functions both as a professional reference and a high-level text for PhD and postdoctoral researchers. Advanced Molecular Dynamics and Chemical Kinetics offers exceptional, in-depth coverage and includes a complete discussion of the theoretical as well as mathematical presentation of techniques. It features relevant exercises as well as comprehensive coverage of: * Second Quantization * Semiclassical Theory * Quantum Theory of Reaction Rates * Feynman Path Integrals * Wavepacket Propagation and Grid Methods * Photodissociation * Molecular Properties of Solvated Molecules * Quantum Model for Electron Transfer * Electron Transfer Coupling Elements * Proton Transfer Reactions in Solution This is the ideal reference for seasoned professionals in molecular reaction dynamics as well as for younger researchers who may want to enter the field or simply wish to learn more about it. Also available: Introduction to Molecular Dynamics and Chemical Kinetics Gert D. Billing and Kurt V. Mikkelsen
Chemical Kinetics and Reaction Dynamics brings together the major facts and theories relating to the rates with which chemical reactions occur from both the macroscopic and microscopic point of view. This book helps the reader achieve a thorough understanding of the principles of chemical kinetics and includes: Detailed stereochemical discussions of reaction steps Classical theory based calculations of state-to-state rate constants A collection of matters on kinetics of various special reactions such as micellar catalysis, phase transfer catalysis, inhibition processes, oscillatory reactions, solid-state reactions, and polymerization reactions at a single source. The growth of the chemical industry greatly depends on the application of chemical kinetics, catalysts and catalytic processes. This volume is therefore an invaluable resource for all academics, industrial researchers and students interested in kinetics, molecular reaction dynamics, and the mechanisms of chemical reactions.
This book deals with a central topic at the interface of chemistry and physics - the understanding of how the transformation of matter takes place at the atomic level. Building on the laws of physics, the book focuses on the theoretical framework for predicting the outcome of chemical reactions. The style is highly systematic with attention to basic concepts and clarity of presentation. Molecular reaction dynamics is about the detailed atomic-level description of chemical reactions. Based on quantum mechanics and statistical mechanics or, as an approximation, classical mechanics, the dynamics of uni- and bi-molecular elementary reactions are described. The book features a detailed presentation of transition-state theory which plays an important role in practice, and a comprehensive discussion of basic theories of reaction dynamics in condensed phases. Examples and end-of-chapter problems are included in order to illustrate the theory and its connection to chemical problems.
Chemical Kinetics bridges the gap between beginner and specialist with a path that leads the reader from the phenomenological approach to the rates of chemical reactions to the state-of-the-art calculation of the rate constants of the most prevalent reactions: atom transfers, catalysis, proton transfers, substitution reactions, energy transfers and electron transfers. For the beginner provides the basics: the simplest concepts, the fundamental experiments, and the underlying theories. For the specialist shows where sophisticated experimental and theoretical methods combine to offer a panorama of time-dependent molecular phenomena connected by a new rational. Chemical Kinetics goes far beyond the qualitative description: with the guidance of theory, the path becomes a reaction path that can actually be inspected and calculated. But Chemical Kinetics is more about structure and reactivity than numbers and calculations. A great emphasis in the clarity of the concepts is achieved by illustrating all the theories and mechanisms with recent examples, some of them described with sufficient detail and simplicity to be used in general chemistry and lab courses.* Looking at atoms and molecules, and how molecular structures change with time. * Providing practical examples and detailed theoretical calculations* Of special interest to Industrial Chemistry and Biochemistry
DIVThis text teaches the principles underlying modern chemical kinetics in a clear, direct fashion, using several examples to enhance basic understanding. Solutions to selected problems. 2001 edition. /div
This book is a progressive presentation of kinetics of the chemical reactions. It provides complete coverage of the domain of chemical kinetics, which is necessary for the various future users in the fields of Chemistry, Physical Chemistry, Materials Science, Chemical Engineering, Macromolecular Chemistry and Combustion. It will help them to understand the most sophisticated knowledge of their future job area. Over 15 chapters, this book present the fundamentals of chemical kinetics, its relations with reaction mechanisms and kinetic properties. Two chapters are then devoted to experimental results and how to calculate the kinetic laws in both homogeneous and heterogeneous systems. The following two chapters describe the main approximation modes to calculate these laws. Three chapters are devoted to elementary steps with the various classes, the principles used to write them and their modeling using the theory of the activated complex in gas and condensed phases. Three chapters are devoted to the particular areas of chemical reactions, chain reactions, catalysis and the stoichiometric heterogeneous reactions. Finally the non-steady-state processes of combustion and explosion are treated in the final chapter.
Molecular reaction dynamics is the study of chemical and physical transformations of matter at the molecular level. The understanding of how chemical reactions occur and how to control them is fundamental to chemists and interdisciplinary areas such as materials and nanoscience, rational drug design, environmental and astrochemistry. This book provides a thorough foundation to this area. The first half is introductory, detailing experimental techniques for initiating and probing reaction dynamics and the essential insights that have been gained. The second part explores key areas including photoselective chemistry, stereochemistry, chemical reactions in real time and chemical reaction dynamics in solutions and interfaces. Typical of the new challenges are molecular machines, enzyme action and molecular control. With problem sets included, this book is suitable for advanced undergraduate and graduate students, as well as being supplementary to chemical kinetics, physical chemistry, biophysics and materials science courses, and as a primer for practising scientists.
The book is a short primer on chemical reaction rates based on a six-lecture first-year undergraduate course taught by the author at the University of Oxford. The book explores the various factors that determine how fast or slowly a chemical reaction proceeds and describes a variety of experimental methods for measuring reaction rates. The link between the reaction rate and the sequence of steps that makes up the reaction mechanism is also investigated. Chemical reaction rates is a core topic in all undergraduate chemistry courses.
The first text to cover both molecular reaction dynamics and chemical kinetics and their respective theories in a single source. After introductory material, the monograph goes on to cover interaction potentials; relative motion and the collisional approach for chemical reaction in the gas phase; partition functions; transition state theory; unimolecualr reactions; molecular reactions calculations; non-adiabatic transitions; surface kinetics; chemical reactions in solution; energetic changes in solvating a molecule; transition state theory in solution; models for diffusion; Kramers' theory of viscosity of solvent in chemical reactions; and electronic transfer reactions in solution. Also includes problems and solved exercises.
Molecular simulation is a powerful tool in materials science, physics, chemistry and biomolecular fields. This updated edition provides a pragmatic introduction to a wide range of techniques for the simulation of molecular systems at the atomic level. The first part concentrates on methods for calculating the potential energy of a molecular system, with new chapters on quantum chemical, molecular mechanical and hybrid potential techniques. The second part describes methods examining conformational, dynamical and thermodynamical properties of systems, covering techniques including geometry-optimization, normal-mode analysis, molecular dynamics, and Monte Carlo simulation. Using Python, the second edition includes numerous examples and program modules for each simulation technique, allowing the reader to perform the calculations and appreciate the inherent difficulties involved in each. This is a valuable resource for researchers and graduate students wanting to know how to use atomic-scale molecular simulations. Supplementary material, including the program library and technical information, available through www.cambridge.org/9780521852524.