Download Free Introduction To Macromolecular Chemistry Book in PDF and EPUB Free Download. You can read online Introduction To Macromolecular Chemistry and write the review.

Introduction to Polymer Chemistry provides undergraduate students with a much-needed, well-rounded presentation of the principles and applications of natural, synthetic, inorganic, and organic polymers. With an emphasis on the environment and green chemistry and materials, this fourth edition continues to provide detailed coverage of natural and synthetic giant molecules, inorganic and organic polymers, elastomers, adhesives, coatings, fibers, plastics, blends, caulks, composites, and ceramics. Building on undergraduate work in foundational courses, the text fulfills the American Chemical Society Committee on Professional Training (ACS CPT) in-depth course requirement
Fundamental concepts and reactions explained through polymers from plants and animals Macromolecular structures introduced via biological polymers Includes a course syllabus, study questions and exercises Extensive lab guidance and protocols for DNA isolation, amplification using PCR Full color figures shown throughout the text This book connects modern synthetic polymer chemistry to its roots by exploring the chemistry of natural polymers and self-assembled macromolecular structures. Designed to introduce students to the basics of polymer science, the text investigates intermolecular forces, functional groups and key reactions by means of polymers found in, and produced by, living plants and animals, including proteins, rubber, DNA, fibers, lignin, carbohydrates and many others. The author explains how varied natural polymeric systems illustrate a wide array of fundamental polymer concepts. Key analogies are demonstrated between mechanisms in biological and synthetic polymerization, and the text uses growth, DNA replication, self-assembly and other biological processes to assist the student in mastering the terminology and molecular-level mechanisms of polymer chemistry. To guide both instructors and students the book includes the outline of a one-semester course syllabus, end-of-chapter questions, as well as detailed instructions for setting up multiple labs dealing with gene isolation and amplification using polymerase chain reaction techniques (PCR). Each chapter also offers exercises based on real-world examples.
An introduction to macromolecular chemistry, covering the structure of macromolecules, their properties, their applications, how they are made, and methods used for studying them. Includes discussion of synthetic materials as well as important biological entities. Physical and chemical aspects are addressed with a minimum of mathematics.
This book discusses macromolecular chemistry, from natural to synthetic polymers. Natural polymers including carbohydrates, lipids, proteins, and nucleic acids are explored including their classifications and properties. Industrial synthetic polymers are discussed including their synthesis, characterization, and industrial use. Applications discussed include potential additives and biodegradable polymers.
Integrating coverage of polymers and biological macromolecules into a single text, Physical Chemistry of Macromolecules is carefully structured to provide a clear and consistent resource for beginners and professionals alike. The basic knowledge of both biophysical and physical polymer chemistry is covered, along with important terms, basic structural properties and relationships. This book includes end of chapter problems and references, and also: Enables users to improve basic knowledge of biophysical chemistry and physical polymer chemistry. Explores fully the principles of macromolecular chemistry, methods for determining molecular weight and configuration of molecules, the structure of macromolecules, and their separations.
Macromolecules is an introductory book about macromolecules, specifically about the fundamental aspects of macromolecules, such as their nature, the ways they are formed, and their behavior. This book also focuses on the basics of macromolecules, which includes history, composition, and properties. The topics covered in this book include polymerization kinetics, chemical reactions, and degradation of macromolecules. This book also discusses biological molecules, including naturally occurring materials, synthetic macromolecules, and model compounds. Students majoring in chemistry or other related fields, such as materials engineering, will find this book very useful.
A comprehensive and approachable introduction to crystallography — now updated in a valuable new edition The Second Edition of this well-received book continues to offer the most concise, authoritative, and easy-to-follow introduction to the field of crystallography. Dedicated to providing a complete, basic presentation of the subject that does not assume a background in physics or math, the book's content flows logically from basic principles to methods, such as those for solving phase problems, interpretation of Patterson maps and the difference Fourier method, the fundamental theory of diffraction and the properties of crystals, and applications in determining macromolecular structure. This new edition includes a vast amount of carefully updated materials, as well as two completely new chapters on recording and compiling X-ray data and growing crystals of proteins and other macromolecules. Richly illustrated throughout to clarify difficult concepts, this book takes a non-technical approach to crystallography that is ideal for professionals and graduate students in structural biology, biophysics, biochemistry, and molecular biology who are studying the subject for the first time.