Download Free Introduction To Industrial Energy Efficiency Book in PDF and EPUB Free Download. You can read online Introduction To Industrial Energy Efficiency and write the review.

Introduction to Industrial Energy Efficiency: Energy Auditing, Energy Management, and Policy Issues offers a systemic overview of all key-aspects involved in improving industrial energy efficiency in various industry sectors. It is organized in three parts, each dealing with a particular perspective needed to form a complete view of related issues. Sections focus on energy auditing and improved energy efficiency of companies from a predominantly technical perspective, shed light on energy management and factors that hinder or drive the adoption of energy efficiency practices in the manufacturing industry, and explore energy efficiency policy instruments and how they are designed, implemented and evaluated. Practicing engineers in the field of energy efficiency, engineering and energy researchers coming into the field, and graduate students will find this book to be an invaluable reference on the fundamental knowledge they need to get started in this area. - Provides, in one volume, a comprehensive overview of energy systems efficiency and management that is applied to various industrial processes - Explores operational measures for improvement, including case studies from varying countries and sectors - Discusses the barriers to, and driving forces for, improving energy efficiency in industrial settings, including technical, behavioral, organizational and policy aspects
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Identify energy conservation opportunities in buildings and industrial facilities and implement energy efficiency and management practices with confidence This comprehensive engineering textbook helps students master the fundamentals of energy efficiency and management and build confidence in applying basic principles of the field to practice. Written by a team of experienced energy efficiency practitioners and educators, Energy Efficiency and Management for Engineers features foundations and practice of energy efficiency principles for all aspects of energy production, distribution, and consumption. Packed with numerous worked-out examples and over 1,400 end-of-chapter problems, the book makes clear connections between theory and practice and provides the engineering rationale behind all energy efficiency measures. Coverage includes: • Energy management principles • Energy audits • Billing rate structures • Power factor • Specific energy consumption • Cogeneration • Boilers and steam systems • Heat recovery systems • Thermal insulation • Heating and cooling of buildings • Windows and infiltration • Electric motors • Compressed air lines • Lighting systems • Energy efficiency practices in buildings • Economic analysis and environmental impacts
Na ovoju: "Applied Industrial Energy and Environmental Management provides a comprehensive and application oriented approach to the technical and managerial challenges of efficient energy performance in industrial plants. Written by leading practitioners in the field with extensive experience of working with development banks, international aid organizations, and multinational companies, the authors are able to offer real case studies as a basis to their method." "This book will be a valuable resource to practising energy and environmental management engineers, plant managers and consultants in the energy and manufacturing industries. It will also be of interest to graduate engineering and science students taking courses in industrial energy and environmental management."
It is universally recognized that the end of the current and the beginning of the next century will be characterized by a radical change in the existing trends in the economic development of all countries and a transition to new principles of economic management on the basis of a resource and energy conservation policy. Thus there is an urgent necessity to study methods, technical aids and economic consequences of this change, and particularly, to determine the possible amounts of energy resources which could be conserved (energy "reserves") in different spheres of the national economy. An increased interest towards energy conservation in industry, one of the largest energy consumers, is quite natural and is manifested by the large num ber of publications on this topic. But the majority of publications are devoted to the solution of narrowly defined problems, determination of energy reserves in specific processes and plants, efficiency estimation of individual energy conserva tion measures, etc. However, it is necessary to develop a general methodological approach to the solution of such problems and create a scientific and methodical base for realizing an energy conservation policy. Such an effort is made in this book, which is concerned with methods for studying energy use efficiency in technological processes and estimation of the theoretical and actual energy reserves in a given process, technology, or industrial sector on the basis of their complete energy balances.
America's economy and lifestyles have been shaped by the low prices and availability of energy. In the last decade, however, the prices of oil, natural gas, and coal have increased dramatically, leaving consumers and the industrial and service sectors looking for ways to reduce energy use. To achieve greater energy efficiency, we need technology, more informed consumers and producers, and investments in more energy-efficient industrial processes, businesses, residences, and transportation. As part of the America's Energy Future project, Real Prospects for Energy Efficiency in the United States examines the potential for reducing energy demand through improving efficiency by using existing technologies, technologies developed but not yet utilized widely, and prospective technologies. The book evaluates technologies based on their estimated times to initial commercial deployment, and provides an analysis of costs, barriers, and research needs. This quantitative characterization of technologies will guide policy makers toward planning the future of energy use in America. This book will also have much to offer to industry leaders, investors, environmentalists, and others looking for a practical diagnosis of energy efficiency possibilities.
This book provides energy efficiency quantitative analysis and optimal methods for discrete manufacturing systems from the perspective of global optimization. In order to analyze and optimize energy efficiency for discrete manufacturing systems, it uses real-time access to energy consumption information and models of the energy consumption, and constructs an energy efficiency quantitative index system. Based on the rough set and analytic hierarchy process, it also proposes a principal component quantitative analysis and a combined energy efficiency quantitative analysis. In turn, the book addresses the design and development of quantitative analysis systems. To save energy consumption on the basis of energy efficiency analysis, it presents several optimal control strategies, including one for single-machine equipment, an integrated approach based on RWA-MOPSO, and one for production energy efficiency based on a teaching and learning optimal algorithm. Given its scope, the book offers a valuable guide for students, teachers, engineers and researchers in the field of discrete manufacturing systems.
This monograph presents a reliable methodology for characterising the energy and eco-efficiency of unit manufacturing processes. The Specific Energy Consumption, SEC, will be identified as the key indicator for the energy efficiency of unit processes. An empirical approach will be validated on different machine tools and manufacturing processes to depict the relationship between process parameters and energy consumptions. Statistical results and additional validation runs will corroborate the high level of accuracy in predicting the energy consumption. In relation to the eco-efficiency, the value and the associated environmental impacts of manufacturing processes will also be discussed. The interrelationship between process parameters, process value and the associated environmental impact will be integrated in the evaluation of eco-efficiency. The book concludes with a further investigation of the results in order to develop strategies for further efficiency improvement. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.
How do we assess energy efficiency? The methodology proposed in this book links the efficiency at the system level to the data - flows and established knowledge - found at the process level. This analysis determines the dependence of the system efficiency on physical characteristics of its processes. Unless this is done, these characteristics may be sources of large errors, by factors of one hundred or more. The suggested methodology saves time of analysis and gives a realistic assessment of the remaining uncertainties. Complete energy systems cannot dissipate more energy than they extract, directly or indirectly. Historic exploitation of underground coal could not run a steam engine for operations which require more coal than it can lift. Can the agro-ethanol industry operate without external energies, (ie: is it more than self-reliant)?
Energy demand reduction is fast becoming a business activity for all companies and organisations because it can increase profits regardless of the nature of their core activity. The International Energy Agency believes that industry could improve its energy efficiency and reduce carbon dioxide emissions by almost a third using the best available practices and technologies. This guide looks at the many ways available to energy managers to achieve or even exceed this level of performance, including: base-lining consumption planning a monitoring and verification strategy metering (including smart, wireless metering) energy supply management motors and drives compressed air and process controls. Uniquely, it includes a whole chapter on greening data centres. It also looks at topics covered in greater detail in its companion volume, Energy Management in Buildings: insulation, lighting, renewable heating, cooling and HVAC systems. Further chapters examine minimising water use and how to make the financial case, both to prioritise measures for cost effectiveness, and to get management on board. This title is aimed at all professional energy, industry and facilities managers, energy consultants, students, trainees and academics and can be read alongside training for ISO 50001 - Energy Management Systems. It takes the reader from basic concepts to the latest advanced thinking, with principles applicable anywhere in the world and in any climate.
A large amount of energy is consumed in the industry to meet the power needed for production processes. In order to meet the heat and mechanical power needs required for many industrial processes, natural gas, petroleum fuel, and electricity are mostly used as energy sources. In addition to the efficient use of energy in order to reduce operating costs in industrial applications, alternatives such as efficient use of energy for conservation of resources and climate, energy recovery, renewable energy preferences, and energy production from wastes are becoming more common. With proper energy management, it is possible to increase energy efficiency independently of the size of the industry and the technologies used in the process. The development of new alternatives for energy efficiency and saving is crucial to meet the growing world energy needs and to compete effectively with fossil fuels and thus reduce greenhouse gases. This small book is a collection of research and reviewed chapters dealing with energy-efficient materials and strategies in different conditions.The Editors would like to record their sincere thanks to the authors for their contributions.