Download Free Introduction To Geometry Made Simple Book in PDF and EPUB Free Download. You can read online Introduction To Geometry Made Simple and write the review.

The standard university-level text for decades, this volume offers exercises in construction problems, harmonic division, circle and triangle geometry, and other areas. 1952 edition, revised and enlarged by the author.
From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2
An interactive guide to shapes for 5 to 8 year olds, this bright and bold lift-the-flap activity book helps children understand the properties of 2-D and 3-D shapes. Shapes are an important topic for early learners, and this visually appealing book will make it a lot of fun, too! Geometry Genius features fun geometric characters, like Fox and Lion, and lift-the-flap activities that help kids relate shapes to everyday life. Characters pose key questions, such as "What's special about a sphere?," "What is an equilateral triangle?," and "How many lines of symmetry does a hexagon have?" Children can then lift the flaps and find the answers. An interactive pop-up will also bring learning to life by encouraging kids to spot different shapes within the scene. Geometry Genius helps kids identify and describe 2-D and 3-D shapes, compare and contrast features of regular and irregular shapes, discuss the size and orientation of shapes, understand nets, identify and count lines of symmetry, and more! It gets kids thinking about shapes in their world and not just on the pages of a math book. Quiz questions and fun activities are found sprinkled throughout the book, encouraging kids to lift the flaps and find out more. Learning shapes is a highly visual topic, and this book tackles the subject in a visually appealing, fully interactive, and playful way.
This book is about differential geometry of space curves and surfaces. The formulation and presentation are largely based on a tensor calculus approach. It can be used as part of a course on tensor calculus as well as a textbook or a reference for an intermediate-level course on differential geometry of curves and surfaces. The book is furnished with an index, extensive sets of exercises and many cross references, which are hyperlinked for the ebook users, to facilitate linking related concepts and sections. The book also contains a considerable number of 2D and 3D graphic illustrations to help the readers and users to visualize the ideas and understand the abstract concepts. We also provided an introductory chapter where the main concepts and techniques needed to understand the offered materials of differential geometry are outlined to make the book fairly self-contained and reduce the need for external references.
Turtle Geometry presents an innovative program of mathematical discovery that demonstrates how the effective use of personal computers can profoundly change the nature of a student's contact with mathematics. Using this book and a few simple computer programs, students can explore the properties of space by following an imaginary turtle across the screen. The concept of turtle geometry grew out of the Logo Group at MIT. Directed by Seymour Papert, author of Mindstorms, this group has done extensive work with preschool children, high school students and university undergraduates.
An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
This volume completes the English adaptation of a classical Russian textbook in elementary Euclidean geometry. The 1st volume subtitled "Book I. Planimetry" was published in 2006 (ISBN 0977985202). This 2nd volume (Book II. Stereometry) covers solid geometry, and contains a chapter on vectors, foundations, and introduction in non-Euclidean geometry added by the translator. The book intended for high-school and college students, and their teachers. Includes 317 exercises, index, and bibliography.
Through a careful treatment of number theory and geometry, Number, Shape, & Symmetry: An Introduction to Number Theory, Geometry, and Group Theory helps readers understand serious mathematical ideas and proofs. Classroom-tested, the book draws on the authors’ successful work with undergraduate students at the University of Chicago, seventh to tenth grade mathematically talented students in the University of Chicago’s Young Scholars Program, and elementary public school teachers in the Seminars for Endorsement in Science and Mathematics Education (SESAME). The first half of the book focuses on number theory, beginning with the rules of arithmetic (axioms for the integers). The authors then present all the basic ideas and applications of divisibility, primes, and modular arithmetic. They also introduce the abstract notion of a group and include numerous examples. The final topics on number theory consist of rational numbers, real numbers, and ideas about infinity. Moving on to geometry, the text covers polygons and polyhedra, including the construction of regular polygons and regular polyhedra. It studies tessellation by looking at patterns in the plane, especially those made by regular polygons or sets of regular polygons. The text also determines the symmetry groups of these figures and patterns, demonstrating how groups arise in both geometry and number theory. The book is suitable for pre-service or in-service training for elementary school teachers, general education mathematics or math for liberal arts undergraduate-level courses, and enrichment activities for high school students or math clubs.
Harold Jacobs’s Geometry created a revolution in the approach to teaching this subject, one that gave rise to many ideas now seen in the NCTM Standards. Since its publication nearly one million students have used this legendary text. Suitable for either classroom use or self-paced study, it uses innovative discussions, cartoons, anecdotes, examples, and exercises that unfailingly capture and hold student interest. This edition is the Jacobs for a new generation. It has all the features that have kept the text in class by itself for nearly 3 decades, all in a thoroughly revised, full-color presentation that shows today’s students how fun geometry can be. The text remains proof-based although the presentation is in the less formal paragraph format. The approach focuses on guided discovery to help students develop geometric intuition.