Download Free Introduction To Environmental Physiology Book in PDF and EPUB Free Download. You can read online Introduction To Environmental Physiology and write the review.

The new and updated edition of this accessible text provides a comprehensive overview of the comparative physiology of animals within an environmental context. Includes two brand new chapters on Nerves and Muscles and the Endocrine System. Discusses both comparative systems physiology and environmental physiology. Analyses and integrates problems and adaptations for each kind of environment: marine, seashore and estuary, freshwater, terrestrial and parasitic. Examines mechanisms and responses beyond physiology. Applies an evolutionary perspective to the analysis of environmental adaptation. Provides modern molecular biology insights into the mechanistic basis of adaptation, and takes the level of analysis beyond the cell to the membrane, enzyme and gene. Incorporates more varied material from a wide range of animal types, with less of a focus purely on terrestrial reptiles, birds and mammals and rather more about the spectacularly successful strategies of invertebrates. A companion site for this book with artwork for downloading is available at: www.blackwellpublishing.com/willmer/
Plant growth; The influence of the environment; Population responses; Adaptability and adaptedness; The acquisition of resources; Energy and carbon; Mineral nutrients; Water; Responses to environmental stress; Temperature; Ionic toxicity; Gaseous toxicity; Interactions between organisms; An ecological perspective.
Human Physiology in Extreme Environments is the one publication that offers how human biology and physiology is affected by extreme environments while highlighting technological innovations that allow us to adapt and regulate environments. Covering a broad range of extreme environments, including high altitude, underwater, tropical climates, and desert and arctic climates as well as space travel, this book will include case studies for practical application. Graduate students, medical students and researchers will find Human Physiology in Extreme Environments an interesting, informative and useful resource for human physiology, environmental physiology and medical studies. - Presents human physiological challenges in Extreme Environments combined in one single resource - Provides an excellent source of information regarding paleontological and anthropological aspects - Offers practical medical and scientific use of current concepts
This book presents methods for investigating the effects of aquatic environmental changes on organisms and the mechanisms involved. It focuses mainly on photosynthetic organisms, but also provides methods for virus, zooplankton and other animal studies. Also including a comprehensive overview of the current methods in the fields of aquatic physiology, ecology, biochemistry and molecular approaches, including the advantages and disadvantages of each method, the book is a valuable guide for young researchers in marine or aquatic sciences studying the physiological processes associated with chemical and physical environmental changes.
"Short, factual description of the book (summary of what it includes, without subjective or promotional language.) This book, for upper undergraduate and graduate students and professionals in the field, is used to provide an overview of how the environment impacts exercise"--
Within recent years man has become increasingly aware of the disastrous environmental changes that he has introduced, and therefore society is now more concerned about understanding the adaptations organisms have evolved in order to survive and flourish in their environment. Because much of the information pertaining to this subject is scattered in various journals or special symposia proceedings, our purpose in writing this book is to bring together in a college-and graduate-student text the principal concepts of the environmental physiology of the animals that inhabit one of the major realms of the earth, the sea. Our book is not meant to be a definitive treatise on the physiological adap tation of the animals that inhabit the marine environment. Instead, we have tried to highlight some of the physiological mechanisms through which these animals have been able to meet the challenges of their environment. We have not written this book for anyone particular scientific discipline; rather, we hope that it will have an interdisciplinary appeal. It is meant to be both a reference text and a text for teaching senior undergraduate and graduate courses in marine biology, physiological ecology of marine animals, and envi ronmental physiology of marine animals.
From reviews of the first edition: "well organized . . . Recommended as an introductory text for undergraduates" -- AAAS Science Books and Films "well written and illustrated" -- Bulletin of the American Meteorological Society
This book provides an in-depth overview on the functional ecology of daily torpor and hibernation in endothermic mammals and birds. The reader is well introduced to the physiology and thermal energetics of endothermy and underlying different types of torpor. Furthermore, evolution of endothermy as well as reproduction and survival strategies of heterothermic animals in a changing environment are discussed. Endothermic mammals and birds can use internal heat production fueled by ingested food to maintain a high body temperature. As food in the wild is not always available, many birds and mammals periodically abandon energetically costly homeothermic thermoregulation and enter an energy-conserving state of torpor, which is the topic of this book. Daily torpor and hibernation (multiday torpor) in these heterothermic endotherms are the most effective means for energy conservation available to endotherms and are characterized by pronounced temporal and controlled reductions in body temperature, energy expenditure, water loss, and other physiological functions. Hibernators express multiday torpor predominately throughout winter, which substantially enhances winter survival. In contrast, daily heterotherms use daily torpor lasting for several hours usually during the rest phase, some throughout the year. Although torpor is still widely considered to be a specific adaptation of a few cold-climate species, it is used by many animals from all climate zones, including the tropics, and is highly diverse with about 25-50% of all mammals, but fewer birds, estimated to use it. While energy conservation during adverse conditions is an important function of torpor, it is also employed to permit or facilitate energy-demanding processes such as reproduction and growth, especially when food supply is limited. Even migrating birds enter torpor to conserve energy for the next stage of migration, whereas bats may use it to deal with heat. Even though many heterothermic species will be challenged by anthropogenic influences such as habitat destruction, introduced species, novel pathogens and specifically global warming, not all are likely to be affected in the same way. In fact it appears that opportunistic heterotherms because of their highly flexible energy requirements, ability to limit foraging and reduce the risk of predation, and often pronounced longevity, may be better equipped to deal with anthropogenic challenges than homeotherms. In contrast strongly seasonal hibernators, especially those restricted to mountain tops, and those that have to deal with new diseases that are difficult to combat at low body temperatures, are likely to be adversely affected. This book addresses researchers and advanced students in Zoology, Ecology and Veterinary Sciences.
A STUDY OF PLANTS-CLIMATE AND THE IMPACTS OF CHANGE UPON VEGETATION.