Download Free Introduction To Electric Fields Book in PDF and EPUB Free Download. You can read online Introduction To Electric Fields and write the review.

University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves
Pulsed Electric Fields to Obtain Healthier and Sustainable Food for Tomorrow illustrates innovative applications derived from the use of pulsed electric fields beyond microbial inactivation. The book begins with an introduction on how pulsed electric fields work and then addresses the impact of pulsed electric fields on bioaccessability/bioavailability and the development of nutraceuticals and food additives. Other sections explore the reduction of contaminants and assess the improvement of industrial process efficiency. A final section explores patents and commercial applications. This book will be a welcomed resource for anyone interested in the technological, physiochemical and nutritional perspectives of product development and the reduction of food toxins and contaminants. The concepts explored in this book could have a profound impact on addressing the concept of "food on demand," a concept that is a top priority in industry.
"This introductory, algebra-based, two-semester college physics book is grounded with real-world examples, illustrations, and explanations to help students grasp key, fundamental physics concepts. ... This online, fully editable and customizable title includes learning objectives, concept questions, links to labs and simulations, and ample practice opportunities to solve traditional physics application problems."--Website of book.
Electric Field Analysis is both a student-friendly textbook and a valuable tool for engineers and physicists engaged in the design work of high-voltage insulation systems. The text begins by introducing the physical and mathematical fundamentals of electric fields, presenting problems from power and dielectric engineering to show how the theories are put into practice. The book then describes various techniques for electric field analysis and their significance in the validation of numerically computed results, as well as: Discusses finite difference, finite element, charge simulation, and surface charge simulation methods for the numerical computation of electric fields Provides case studies for electric field distribution in a cable termination, around a post insulator, in a condenser bushing, and around a gas-insulated substation (GIS) spacer Explores numerical field calculation for electric field optimization, demonstrating contour correction and examining the application of artificial neural networks Explains how high-voltage field optimization studies are carried out to meet the desired engineering needs Electric Field Analysis is accompanied by an easy-to-use yet comprehensive software for electric field computation. The software, along with a wealth of supporting content, is available for download with qualifying course adoption.
APlusPhysics: Your Guide to Regents Physics Essentials is a clear and concise roadmap to the entire New York State Regents Physics curriculum, preparing students for success in their high school physics class as well as review for high marks on the Regents Physics Exam. Topics covered include pre-requisite math and trigonometry; kinematics; forces; Newton's Laws of Motion, circular motion and gravity; impulse and momentum; work, energy, and power; electrostatics; electric circuits; magnetism; waves; optics; and modern physics. Featuring more than five hundred questions from past Regents exams with worked out solutions and detailed illustrations, this book is integrated with the APlusPhysics.com website, which includes online question and answer forums, videos, animations, and supplemental problems to help you master Regents Physics essentials. "The best physics books are the ones kids will actually read." Advance Praise for APlusPhysics Regents Physics Essentials: "Very well written... simple, clear engaging and accessible. You hit a grand slam with this review book." -- Anthony, NY Regents Physics Teacher. "Does a great job giving students what they need to know. The value provided is amazing." -- Tom, NY Regents Physics Teacher. "This was tremendous preparation for my physics test. I love the detailed problem solutions." -- Jenny, NY Regents Physics Student. "Regents Physics Essentials has all the information you could ever need and is much easier to understand than many other textbooks... it is an excellent review tool and is truly written for students." -- Cat, NY Regents Physics Student
This introductory text provides coverage of both static and dynamic fields. There are references to computer visualisation (Mathcad) and computation throughout the text, and there are Mathcad electronic books available free on the Internet to help students visualise electromagnetic fields. Important equations are highlighted in the text, and there are examples and problems throughout, with answers to the problems at the back of the book.
Starting with an overview of the theory behind - and demonstrations of the effect of - electric fields on structure and reactivity, this accessible reference work aims to encourage those new to the field to consider harnessing these effects in their own work.
This authoritative review brings scientists up-to-date with the exciting recent developments in modern electric field applications and highlights their benefits compared with other methods. In Part 1 the book opens with a complete account of electrochromatography - a state-of-the-art technique that combines chromatography and electrophoresis. It reveals how you can achieve first-class separations in numerous analytical and biochemical applications. Part 2 focuses on the unique characteristics of electroprocesses in industry, and several examples, such as electroosmotic dewatering, new electro-rheological fluid technologies and demulsification processes in the car and oil industries, are given. The role of the electric field in chemical processes is discussed in Part 3. The chapters explore its use in concentration processes, immunoassay and molecular orientation methods, and important examples are presented in each case. This book is essential reading for analytical chemists, applied chemists and chemical engineers working in research and development wishing to keep up with this dynamic field.
First published in 1973, Dr Clemmow's Introduction to Electromagnetic Theory provides a crisp and selective account of the subject. It concentrates on field theory (with the early development of Maxwell's equations) and omits extended descriptions of experimental phenomena and technical applications, though without losing sight of the practical nature of the subject. Rationalized mks units are used and an awareness of orders of magnitude is fostered. Fields in media are discussed from both the macroscopic and microscopic points of view. As befits a mainly theoretical treatment, a knowledge of vector algebra and vector calculus is assumed, the standard results required being summarized in an appendix. Other comparatively advanced mathematical techniques, such as tensors anf those involving Legendre or Bessel functions, are avoided. Problems for solution, some 180 in all, are given at the end of each chapter.