Download Free Introduction To Complex Analysis And Its Applications Bwllf Book in PDF and EPUB Free Download. You can read online Introduction To Complex Analysis And Its Applications Bwllf and write the review.

This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Introductory Complex and Analysis Applications provides an introduction to the functions of a complex variable, emphasizing applications. This book covers a variety of topics, including integral transforms, asymptotic expansions, harmonic functions, Fourier transformation, and infinite series. Organized into eight chapters, this book begins with an overview of the theory of functions of a complex variable. This text then examines the properties of analytical functions, which are all consequences of the differentiability of the function. Other chapters consider the converse of Taylor's Theorem, namely that convergent power series are analytical functions in their domain of convergence. This book discusses as well the Residue Theorem, which is of fundamental significance in complex analysis and is the core concept in the development of the techniques. The final chapter deals with the method of steepest descent, which is useful in determining the asymptotic behavior of integral representations of analytic functions. This book is a valuable resource for undergraduate students in engineering and mathematics.
The aim of the book is to give a smooth analytic continuation from calculus to complex analysis by way of plenty of practical examples and worked-out exercises. The scope ranges from applications in calculus to complex analysis in two different levels.If the reader is in a hurry, he can browse the quickest introduction to complex analysis at the beginning of Chapter 1, which explains the very basics of the theory in an extremely user-friendly way. Those who want to do self-study on complex analysis can concentrate on Chapter 1 in which the two mainstreams of the theory — the power series method due to Weierstrass and the integration method due to Cauchy — are presented in a very concrete way with rich examples. Readers who want to learn more about applied calculus can refer to Chapter 2, where numerous practical applications are provided. They will master the art of problem solving by following the step by step guidance given in the worked-out examples.This book helps the reader to acquire fundamental skills of understanding complex analysis and its applications. It also gives a smooth introduction to Fourier analysis as well as a quick prelude to thermodynamics and fluid mechanics, information theory, and control theory. One of the main features of the book is that it presents different approaches to the same topic that aids the reader to gain a deeper understanding of the subject.
The new Second Edition of A First Course in Complex Analysis with Applications is a truly accessible introduction to the fundamental principles and applications of complex analysis. Designed for the undergraduate student with a calculus background but no prior experience with complex variables, this text discusses theory of the most relevant mathematical topics in a student-friendly manor. With Zill's clear and straightforward writing style, concepts are introduced through numerous examples and clear illustrations. Students are guided and supported through numerous proofs providing them with a higher level of mathematical insight and maturity. Each chapter contains a separate section on the applications of complex variables, providing students with the opportunity to develop a practical and clear understanding of complex analysis.
The aim of this comparatively short textbook is a sufficiently full exposition of the fundamentals of the theory of functions of a complex variable to prepare the student for various applications. Several important applications in physics and engineering are considered in the book. This thorough presentation includes all theorems (with a few exceptions) presented with proofs. No previous exposure to complex numbers is assumed. The textbook can be used in one-semester or two-semester courses. In one respect this book is larger than usual, namely in the number of detailed solutions of typical problems. This, together with various problems, makes the book useful both for self- study and for the instructor as well. A specific point of the book is the inclusion of the Laplace transform. These two topics are closely related. Concepts in complex analysis are needed to formulate and prove basic theorems in Laplace transforms, such as the inverse Laplace transform formula. Methods of complex analysis provide solutions for problems involving Laplace transforms. Complex numbers lend clarity and completion to some areas of classical analysis. These numbers found important applications not only in the mathematical theory, but in the mathematical descriptions of processes in physics and engineering.
This book offers an essential textbook on complex analysis. After introducing the theory of complex analysis, it places special emphasis on the importance of Poincare theorem and Hartog’s theorem in the function theory of several complex variables. Further, it lays the groundwork for future study in analysis, linear algebra, numerical analysis, geometry, number theory, physics (including hydrodynamics and thermodynamics), and electrical engineering. To benefit most from the book, students should have some prior knowledge of complex numbers. However, the essential prerequisites are quite minimal, and include basic calculus with some knowledge of partial derivatives, definite integrals, and topics in advanced calculus such as Leibniz’s rule for differentiating under the integral sign and to some extent analysis of infinite series. The book offers a valuable asset for undergraduate and graduate students of mathematics and engineering, as well as students with no background in topological properties.
Provides the reader with a deep appreciation of complex analysis and how this subject fits into mathematics. The first four chapters provide an introduction to complex analysis with many elementary and unusual applications. Chapters 5 to 7 develop the Cauchy theory and include some striking applications to calculus. Chapter 8 glimpses several appealing topics, simultaneously unifying the book and opening the door to further study.
This volume presents a collection of contributions to an international conference on complex analysis and its applications held at the newly founded Hong Kong University of Science and Technology in January 1993. The aim of the conference was to advance the theoretical aspects of complex analysis and to explore the application of its techniques to physical and engineering problems. Three main areas were emphasised: Value distribution theory; Complex dynamical system and geometric function theory; and the Application of complex analysis to differential quations and physical engineering problems.
The basics of what every scientist and engineer should know, from complex numbers, limits in the complex plane, and complex functions to Cauchy's theory, power series, and applications of residues. 1974 edition.