Download Free Introduction To Compact Riemann Surfaces And Dessins Denfants Book in PDF and EPUB Free Download. You can read online Introduction To Compact Riemann Surfaces And Dessins Denfants and write the review.

An elementary account of the theory of compact Riemann surfaces and an introduction to the Belyi-Grothendieck theory of dessins d'enfants.
Few books on the subject of Riemann surfaces cover the relatively modern theory of dessins d'enfants (children's drawings), which was launched by Grothendieck in the 1980s and is now an active field of research. In this 2011 book, the authors begin with an elementary account of the theory of compact Riemann surfaces viewed as algebraic curves and as quotients of the hyperbolic plane by the action of Fuchsian groups of finite type. They then use this knowledge to introduce the reader to the theory of dessins d'enfants and its connection with algebraic curves defined over number fields. A large number of worked examples are provided to aid understanding, so no experience beyond the undergraduate level is required. Readers without any previous knowledge of the field of dessins d'enfants are taken rapidly to the forefront of current research.
This volume provides an introduction to dessins d'enfants and embeddings of bipartite graphs in compact Riemann surfaces. The first part of the book presents basic material, guiding the reader through the current field of research. A key point of the second part is the interplay between the automorphism groups of dessins and their Riemann surfaces, and the action of the absolute Galois group on dessins and their algebraic curves. It concludes by showing the links between the theory of dessins and other areas of arithmetic and geometry, such as the abc conjecture, complex multiplication and Beauville surfaces. Dessins d'Enfants on Riemann Surfaces will appeal to graduate students and all mathematicians interested in maps, hypermaps, Riemann surfaces, geometric group actions, and arithmetic.
This book presents original peer-reviewed contributions from the London Mathematical Society (LMS) Midlands Regional Meeting and Workshop on 'Galois Covers, Grothendieck-Teichmüller Theory and Dessinsd'Enfants', which took place at the University of Leicester, UK, from 4 to 7 June, 2018. Within the theme of the workshop, the collected articles cover a broad range of topics and explore exciting new links between algebraic geometry, representation theory, group theory, number theory and algebraic topology. The book combines research and overview articles by prominent international researchers and provides a valuable resource for researchers and students alike.
Dessins d'Enfants are combinatorial objects, namely drawings with vertices and edges on topological surfaces. Their interest lies in their relation with the set of algebraic curves defined over the closure of the rationals, and the corresponding action of the absolute Galois group on them. The study of this group via such realted combinatorial methods as its action on the Dessins and on certain fundamental groups of moduli spaces was initiated by Alexander Grothendieck in his unpublished Esquisse d'un Programme, and developed by many of the mathematicians who have contributed to this volume. The various articles here unite all of the basics of the subject as well as the most recent advances. Researchers in number theory, algebraic geometry or related areas of group theory will find much of interest in this book.
Automorphism groups of Riemann surfaces have been widely studied for almost 150 years. This area has persisted in part because it has close ties to many other topics of interest such as number theory, graph theory, mapping class groups, and geometric and computational group theory. In recent years there has been a major revival in this area due in part to great advances in computer algebra systems and progress in finite group theory. This volume provides a concise but thorough introduction for newcomers to the area while at the same time highlighting new developments for established researchers. The volume starts with two expository articles. The first of these articles gives a historical perspective of the field with an emphasis on highly symmetric surfaces, such as Hurwitz surfaces. The second expository article focuses on the future of the field, outlining some of the more popular topics in recent years and providing 78 open research problems across all topics. The remaining articles showcase new developments in the area and have specifically been chosen to cover a variety of topics to illustrate the range of diversity within the field.
Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field and active research area in algebraic geometry. The subject's interplay between algebra, geometry, topology and analysis is a beautiful example of the interconnectedness of mathematics. This book introduces students to this increasingly important field, covering key topics such as manifolds, monodromy representations and the Hurwitz potential. Designed for undergraduate study, this classroom-tested text includes over 100 exercises to provide motivation for the reader. Also included are short essays by guest writers on how they use Hurwitz theory in their work, which ranges from string theory to non-Archimedean geometry. Whether used in a course or as a self-contained reference for graduate students, this book will provide an exciting glimpse at mathematics beyond the standard university classes.
This volume contains seventeen of the best papers delivered at the SIGMAP Workshop 2014, representing the most recent advances in the field of symmetries of discrete objects and structures, with a particular emphasis on connections between maps, Riemann surfaces and dessins d’enfant.Providing the global community of researchers in the field with the opportunity to gather, converse and present their newest findings and advances, the Symmetries In Graphs, Maps, and Polytopes Workshop 2014 was the fifth in a series of workshops. The initial workshop, organized by Steve Wilson in Flagstaff, Arizona, in 1998, was followed in 2002 and 2006 by two meetings held in Aveiro, Portugal, organized by Antonio Breda d’Azevedo, and a fourth workshop held in Oaxaca, Mexico, organized by Isabel Hubard in 2010.This book should appeal to both specialists and those seeking a broad overview of what is happening in the area of symmetries of discrete objects and structures.iv>
Graphs drawn on two-dimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in recent decades, ranging from Galois theory to quantum gravity models, and has become a kind of a focus of a vast field of research. The book provides an accessible introduction to this new domain, including such topics as coverings of Riemann surfaces, the Galois group action on embedded graphs (Grothendieck's theory of "dessins d'enfants"), the matrix integral method, moduli spaces of curves, the topology of meromorphic functions, and combinatorial aspects of Vassiliev's knot invariants and, in an appendix by Don Zagier, the use of finite group representation theory. The presentation is concrete throughout, with numerous figures, examples (including computer calculations) and exercises, and should appeal to both graduate students and researchers.
This volume contains the proceedings of the conference on Riemann and Klein Surfaces, Symmetries and Moduli Spaces, in honor of Emilio Bujalance, held from June 24-28, 2013, at Linköping University. The conference and this volume are devoted to the mathematics that Emilio Bujalance has worked with in the following areas, all with a computational flavor: Riemann and Klein surfaces, automorphisms of real and complex surfaces, group actions on surfaces and topological properties of moduli spaces of complex curves and Abelian varieties.