Download Free Introduction To Coding And Information Theory Book in PDF and EPUB Free Download. You can read online Introduction To Coding And Information Theory and write the review.

This book is intended to introduce coding theory and information theory to undergraduate students of mathematics and computer science. It begins with a review of probablity theory as applied to finite sample spaces and a general introduction to the nature and types of codes. The two subsequent chapters discuss information theory: efficiency of codes, the entropy of information sources, and Shannon's Noiseless Coding Theorem. The remaining three chapters deal with coding theory: communication channels, decoding in the presence of errors, the general theory of linear codes, and such specific codes as Hamming codes, the simplex codes, and many others.
This is a concise, easy-to-read guide, introducing beginners to coding theory and information theory.
Focusing on both theory and practical applications, this volume combines in a natural way the two major aspects of information representation--representation for storage (coding theory) and representation for transmission (information theory).
This book is an introduction to information and coding theory at the graduate or advanced undergraduate level. It assumes a basic knowledge of probability and modern algebra, but is otherwise self- contained. The intent is to describe as clearly as possible the fundamental issues involved in these subjects, rather than covering all aspects in an encyclopedic fashion. The first quarter of the book is devoted to information theory, including a proof of Shannon's famous Noisy Coding Theorem. The remainder of the book is devoted to coding theory and is independent of the information theory portion of the book. After a brief discussion of general families of codes, the author discusses linear codes (including the Hamming, Golary, the Reed-Muller codes), finite fields, and cyclic codes (including the BCH, Reed-Solomon, Justesen, Goppa, and Quadratic Residue codes). An appendix reviews relevant topics from modern algebra.
This text is an elementary introduction to information and coding theory. The first part focuses on information theory, covering uniquely decodable and instantaneous codes, Huffman coding, entropy, information channels, and Shannon’s Fundamental Theorem. In the second part, linear algebra is used to construct examples of such codes, such as the Hamming, Hadamard, Golay and Reed-Muller codes. Contains proofs, worked examples, and exercises.
Student edition of the classic text in information and coding theory
This book is designed to be usable as a textbook for an undergraduate course or for an advanced graduate course in coding theory as well as a reference for researchers in discrete mathematics, engineering and theoretical computer science. This second edition has three parts: an elementary introduction to coding, theory and applications of codes, and algebraic curves. The latter part presents a brief introduction to the theory of algebraic curves and its most important applications to coding theory.
Various measures of information are discussed in first chapter. Information rate, entropy and mark off models are presented. Second and third chapter deals with source coding. Shannon's encoding algorithm, discrete communication channels, mutual information, Shannon's first theorem are also presented. Huffman coding and Shannon-Fano coding is also discussed. Continuous channels are discussed in fourth chapter. Channel coding theorem and channel capacity theorems are also presented. Block codes are discussed in chapter fifth, sixth and seventh. Linear block codes, Hamming codes, syndrome decoding is presented in detail. Structure and properties of cyclic codes, encoding and syndrome decoding for cyclic codes is also discussed. Additional cyclic codes such as RS codes, Golay codes, burst error correction is also discussed. Last chapter presents convolutional codes. Time domain, transform domain approach, code tree, code trellis, state diagram, Viterbi decoding is discussed in detail.
It is gratifying that this textbook is still sufficiently popular to warrant a third edition. I have used the opportunity to improve and enlarge the book. When the second edition was prepared, only two pages on algebraic geometry codes were added. These have now been removed and replaced by a relatively long chapter on this subject. Although it is still only an introduction, the chapter requires more mathematical background of the reader than the remainder of this book. One of the very interesting recent developments concerns binary codes defined by using codes over the alphabet 7l.4• There is so much interest in this area that a chapter on the essentials was added. Knowledge of this chapter will allow the reader to study recent literature on 7l. -codes. 4 Furthermore, some material has been added that appeared in my Springer Lec ture Notes 201, but was not included in earlier editions of this book, e. g. Generalized Reed-Solomon Codes and Generalized Reed-Muller Codes. In Chapter 2, a section on "Coding Gain" ( the engineer's justification for using error-correcting codes) was added. For the author, preparing this third edition was a most welcome return to mathematics after seven years of administration. For valuable discussions on the new material, I thank C.P.l.M.Baggen, I. M.Duursma, H.D.L.Hollmann, H. C. A. van Tilborg, and R. M. Wilson. A special word of thanks to R. A. Pellikaan for his assistance with Chapter 10.
Information Theory: Coding Theorems for Discrete Memoryless Systems presents mathematical models that involve independent random variables with finite range. This three-chapter text specifically describes the characteristic phenomena of information theory. Chapter 1 deals with information measures in simple coding problems, with emphasis on some formal properties of Shannon's information and the non-block source coding. Chapter 2 describes the properties and practical aspects of the two-terminal systems. This chapter also examines the noisy channel coding problem, the computation of channel capacity, and the arbitrarily varying channels. Chapter 3 looks into the theory and practicality of multi-terminal systems. This book is intended primarily for graduate students and research workers in mathematics, electrical engineering, and computer science.