Download Free Introduction To Biomanufacturing Book in PDF and EPUB Free Download. You can read online Introduction To Biomanufacturing and write the review.

Today is a time of unparalleled excitement in the world of biopharmaceuticals. This book is a compendium of a tremendous body of knowledge, distilled into its most essential parts. Not only are there theoretical and conceptual ideas about biopharmaceutical manufacturing, but also content specific to skills and abilities. It serves as a well-paced guide for beginning learners as well as a cogent reference for seasoned biotechnology professionals alike. This book will help a new generation of students to become inspired and familiarize themselves with the theories, principles, and vernacular of biopharmaceutical production and all that it entails. A quick overview of contents include; Operational Excellence, Facilities, Metrology, Validation, Environmental Health & Safety (EHS), Quality Assurance, Microbiological Control, Quality Control Biochemistry, Upstream Processing, Downstream Processing, Process Development, and a Master Glossary.
Biotechnology for Beginners, Third Edition presents the latest developments in the evolving field of biotechnology which has grown to such an extent over the past few years that increasing numbers of professional’s work in areas that are directly impacted by the science. This book offers an exciting and colorful overview of biotechnology for professionals and students in a wide array of the life sciences, including genetics, immunology, biochemistry, agronomy and animal science. This book will also appeals to lay readers who do not have a scientific background but are interested in an entertaining and informative introduction to the key aspects of biotechnology. Authors Renneberg and Loroch discuss the opportunities and risks of individual technologies and provide historical data in easy-to-reference boxes, highlighting key topics. The book covers all major aspects of the field, from food biotechnology to enzymes, genetic engineering, viruses, antibodies, and vaccines, to environmental biotechnology, transgenic animals, analytical biotechnology, and the human genome. Covers the whole of biotechnology Presents an extremely accessible style, including lavish and humorous illustrations throughout Includes new chapters on CRISPR cas-9, COVID-19, the biotechnology of cancer, and more
This book is a short introduction to the engineering principles of harnessing the vast potential of microorganisms, and animal and plant cells in making biochemical products. It was written for scientists who have no background in engineering, and for engineers with minimal background in biology. The overall subject dealt with is process. But the coverage goes beyond the process of biomanufacturing in the bioreactor, and extends to the factory of cell’s biosynthetic machinery. Starting with an overview of biotechnology and organism, engineers are eased into biochemical reactions and life scientists are exposed to the technology of production using cells. Subsequent chapters allow engineers to be acquainted with biochemical pathways, while life scientist learn about stoichiometric and kinetic principles of reactions and cell growth. This leads to the coverage of reactors, oxygen transfer and scale up. Following three chapters on biomanufacturing of current and future importance, i.e. cell culture, stem cells and synthetic biology, the topic switches to product purification, first with a conceptual coverage of operations used in bioseparation, and then a more detailed analysis to provide a conceptual understanding of chromatography, the modern workhorse of bioseparation. Drawing on principles from engineering and life sciences, this book is for practitioners in biotechnology and bioengineering. The author has used the book for a course for advanced students in both engineering and life sciences. To this end, problems are provided at the end of each chapter.
This tutorial will help technical professionals in optics determine whether their technologies have potential application in the life sciences. It also is useful as a 'prep class' for more detailed books on biology and biotechnology, filling the gap between fundamental and high-level approaches.
With decreasing profit margins, increasing cost pressures, growing regulatory compliance concerns, mounting pressure from generic drugs and increasing anxiety about the future of healthcare reimbursement, pharmaceutical manufacturers are now forced to re-examine and re-assess the way they have been doing things. In order to sustain profitability, these companies are looking to reduce waste (of all kinds), improve efficiency and increase productivity. Many of them are taking a closer look at lean manufacturing as a way to achieve these goals. Lean biomanufacturing re-visits lean principles and then applies them sympathetically - in a highly practical approach - to the specific needs of pharmaceutical processes, which present significantly different challenges to more mainstream manufacturing processes. A major goal of the book is to highlight those problems and issues that appear more specific or unique to biopharmaceutical manufacturing situations and to provide some insights into what challenges are the important ones to solve and what techniques, tools and mechanisms to employ to be successful.Following an introduction to lean biomanufacturing, the book goes on to discuss lean technologies and methods applied in biomanufacturing. Later chapters cover the creation and implementation of the Transition Plan, issues facing the biopharmaceutical industry, creating a lean approach towards biopharmaceutical processes and the contribution of simulation models in developing these processes. The final chapter covers examples of new technology innovations which help facilitate lean biomanufacturing. A focus on the issues associated with the application of lean principles to biomanufacturing Practical examples of factors which can affect biopharmaceutical processes Coverage of key factors which require integration to run an efficient biopharmaceutical process
Authoritative guide to the principles, characteristics, engineering aspects, economics, and applications of disposables in the manufacture of biopharmaceuticals The revised and updated second edition of Single-Use Technology in Biopharmaceutical Manufacture offers a comprehensive examination of the most-commonly used disposables in the manufacture of biopharmaceuticals. The authors—noted experts on the topic—provide the essential information on the principles, characteristics, engineering aspects, economics, and applications. This authoritative guide contains the basic knowledge and information about disposable equipment. The author also discusses biopharmaceuticals’ applications through the lens of case studies that clearly illustrate the role of manufacturing, quality assurance, and environmental influences. This updated second edition revises existing information with recent developments that have taken place since the first edition was published. The book also presents the latest advances in the field of single-use technology and explores topics including applying single-use devices for microorganisms, human mesenchymal stem cells, and T-cells. This important book: • Contains an updated and end-to-end view of the development and manufacturing of single-use biologics • Helps in the identification of appropriate disposables and relevant vendors • Offers illustrative case studies that examine manufacturing, quality assurance, and environmental influences • Includes updated coverage on cross-functional/transversal dependencies, significant improvements made by suppliers, and the successful application of the single-use technologies Written for biopharmaceutical manufacturers, process developers, and biological and chemical engineers, Single-Use Technology in Biopharmaceutical Manufacture, 2nd Edition provides the information needed for professionals to come to an easier decision for or against disposable alternatives and to choose the appropriate system.
This is the first of two volumes that together provide an overview of the latest advances in the generation and application of digital twins in bioprocess design and optimization. Both processes have undergone significant changes over the past few decades, moving from data-driven approaches into the 21st-century digitalization of the bioprocess industry. Moreover, the high demand for biotechnological products calls for efficient methods during research and development, as well as during tech transfer and routine manufacturing. In this regard, one promising tool is the use of digital twins, which offer a virtual representation of the bioprocess. They reflect the mechanistics of the biological system and the interactions between process parameters, key performance indicators and product quality attributes in the form of a mathematical process model. Furthermore, digital twins allow us to use computer-aided methods to gain an improved process understanding, to test and plan novel bioprocesses, and to efficiently monitor them. This book explains the mathematical structure of digital twins, their development and the model’s respective parts, as well as concepts for the knowledge-driven generation and structural variability of digital twins. Covering fundamentals as well as applications, the two volumes offer the ideal introduction to the topic for researchers in academy and industry alike.