Download Free Introduction To Biocatalysis Using Enzymes And Microorganisms Book in PDF and EPUB Free Download. You can read online Introduction To Biocatalysis Using Enzymes And Microorganisms and write the review.

This book gives an introduction to biotransformations, the practice of harnessing biological catalysts for the preparation of useful chemicals.
This second edition of a bestselling textbook offers an instructive and comprehensive overview of our current knowledge of biocatalysis and enzyme technology. The book now contains about 40% more printed content. Three chapters are completely new, while the others have been thoroughly updated, and a section with problems and solutions as well as new case studies have been added. Following an introduction to the history of enzyme applications, the text goes on to cover in depth enzyme mechanisms and kinetics, production, recovery, characterization and design by protein engineering. The authors treat a broad range of applications of soluble and immobilized biocatalysts, including wholecell systems, the use of non-aqueous reaction systems, applications in organic synthesis, bioreactor design and reaction engineering. Methods to estimate the sustainability, important internet resources and their evaluation, and legislation concerning the use of biocatalysts are also covered.
Organic Synthesis Using Biocatalysis provides a concise background on the application of biocatalysis for the synthesis of organic compounds, including the important biocatalytic reactions and application of biocatalysis for the synthesis of organic compounds in pharmaceutical and non-pharmaceutical areas. The book provides recipes for carrying out various biocatalytic reactions, helping both newcomers and non-experts use these methodologies. It is written by experts in their fields, and provides both a current status and future prospects of biocatalysis in the synthesis of organic molecules. - Provides a concise background of the application of biocatalysis for the synthesis of organic compounds - Expert contributors present recipes for carrying out biocatalytic reactions, including subject worthy discussions on biocatalysis in organic synthesis, biocatalysis for selective organic transformation, enzymes as catalysis for organic synthesis, biocatalysis in Industry, including pharmaceuticals, and more - Contains detailed, separate chapters that describe the application of biocatalysis
Biocatalysts are increasingly used by chemists engaged in fine chemical synthesis within both industry and academia. Today, there exists a huge choice of high-tech enzymes and whole cell biocatalysts, which add enormously to the repertoire of synthetic possibilities. Practical Methods for Biocatalysis and Biotransformations 2 is a "how-to" guide that focuses on the practical applications of enzymes and strains of microorganisms that are readily obtained or derived from culture collections. The sources of starting materials and reagents, hints, tips and safety advice (where appropriate) are given to ensure, as far as possible, that the procedures are reproducible. Comparisons to alternative methodology are given and relevant references to the primary literature are cited. This second volume – which can be used on its own or in combination with the first volume - concentrates on new applications and new enzyme families reported since the first volume. Contents include: introduction to recent developments and future needs in biocatalysts and synthetic biology in industry reductive amination enoate reductases for reduction of electron deficient alkenes industrial carbonyl reduction regio- and stereo- selective hydroxylation oxidation of alcohols selective oxidation industrial hydrolases and related enzymes transferases for alkylation, glycosylation and phosphorylation C-C bond formation and decarboxylation halogenation/dehalogenation/heteroatom oxidation tandem and sequential multi-enzymatic syntheses Practical Methods for Biocatalysis and Biotransformations 2 is an essential collection of biocatalytic methods for chemical synthesis which will find a place on the bookshelves of synthetic organic chemists, pharmaceutical chemists, and process R&D chemists in industry and academia.
This book was written with the purpose of providing a sound basis for the design of enzymatic reactions based on kinetic principles, but also to give an updated vision of the potentials and limitations of biocatalysis, especially with respect to recent app- cations in processes of organic synthesis. The ?rst ?ve chapters are structured in the form of a textbook, going from the basic principles of enzyme structure and fu- tion to reactor design for homogeneous systems with soluble enzymes and hete- geneous systems with immobilized enzymes. The last chapter of the book is divided into six sections that represent illustrative case studies of biocatalytic processes of industrial relevance or potential, written by experts in the respective ?elds. We sincerely hope that this book will represent an element in the toolbox of gr- uate students in applied biology and chemical and biochemical engineering and also of undergraduate students with formal training in organic chemistry, biochemistry, thermodynamics and chemical reaction kinetics. Beyond that, the book pretends also to illustrate the potential of biocatalytic processes with case studies in the ?eld of organic synthesis, which we hope will be of interest for the academia and prof- sionals involved in R&D&I. If some of our young readers are encouraged to engage or persevere in their work in biocatalysis this will certainly be our more precious reward.
The completely revised second edition of this user-friendly and application-oriented overview of one-step biotransformations of industrial importance. Based on extensive literature and patent research, this book is unique in arranging each process in a systematic way to allow for easy comparison. All the chapters have been rewritten, with all the processes updated and more than 30 new processes added. Each set of data is accompanied by key literature citations, supported by flow sheets where available, reduced to their significant elements. In addition, an extensive index classified by substrates, products, enzymes, and companies provides direct access to each process, organized according to enzyme class. Biotechnologists, biochemists, microbiologists, process engineers and those working in the chemical and biotechnological industries will find here all the significant parameters characterizing both the biotransformation and the process.
In this Completely Revised and Extended Edition with a significantly enhanced content, all Chapters have been updated considering relevant literature and recent developments until 2016 together with application oriented examples with a focus on Industrial Biocatalysis. Newly treated topics comprise among others systems metabolic engineering approaches, metagenome screening, new tools for pathway engineering, and de-novo computational design as actual research areas in biocatalysis. Information about different aspects of RNA technologies, and completely new Chapters on 'Fluorescent Proteins' and 'Biocatalysis and Nanotechnology' are also included.
This book describes recent progress in enzyme-driven green syntheses of industrially important molecules. The first three introductory chapters overview recent technological advances in enzymes and cell-based transformations, and green chemistry metrics for synthetic efficiency. The remaining chapters are directed to case studies in biotechnological production of pharmaceuticals (small molecules, natural products and biologics), flavors, fragrance and cosmetics, fine chemicals, value-added chemicals from glucose and biomass, and polymeric materials. The book is aimed to facilitate the industrial applications of this powerful and emerging green technology, and catalyze the advancement of the technology itself.
Volume 7 of the Jenny Stanford Series on Biocatalysis deals with several different aspects of pharmaceuticals, which include not only various applications of drugs and their metabolism but also natural resources for active pharmaceutical ingredients as well as the removal of pharmaceutical pollution. In detail, novel approaches for developing microbial fermentation processes to produce vitamin B6 using microorganisms are described together with novel routes for vitamin B6 biosynthesis. The other topics discussed are new approaches for producing the successful anticancer drug Taxol from naturally occurring precursors, molecular farming through plant engineering as a cost-effective means to produce therapeutic and prophylactic proteins, and successful screening of potent microorganisms producing L-asparaginase for various chemotherapeutic applications. Furthermore, microbial biotransformations in the production and degradation of fluorinated pharmaceuticals are described. The other chapters inform the reader about the biotransformation of xenobiotics/drugs in living systems, the degradation of pharmaceuticals by white-rot fungi and their ligninolytic enzymes, and the removal of pharmaceutical pollution from municipal sewage using laccase.
Biocatalysis has become an essential tool in the chemical industry and is the core of industrial biotechnology, also known as white biotechnology, making use of biocatalysts in terms of enzymes or whole cells in chemical processes as an alternative to chemical catalysts. This shift can be seen in the many areas of daily life where biocatalysts-with