Download Free Intrinsic And Extrinsic Regulators Of Stem Cell Function In Normal And Malignant Hematopoiesis Book in PDF and EPUB Free Download. You can read online Intrinsic And Extrinsic Regulators Of Stem Cell Function In Normal And Malignant Hematopoiesis and write the review.

This book is intended as a comprehensive resource for clinicians and researchers seeking in-depth information on geriatric oncology. The coverage encompasses epidemiology, the biology and (patho)physiology of aging and cancer, geriatric assessment and management, hematologic malignancies, solid tumors, issues in patient care, and research methods. Since cancer is a disease of aging and people are living longer, most cancer patients are now aged 70 and older. Yet the more we age, the more diverse we become in terms of our health, biologic fitness, and cancer behavior. Typically, however, general oncology clinical trials address only a selected healthier and younger population of patients. Geriatric oncology is the area of oncology that addresses these issues but while a wealth of knowledge has been accumulated, information is often difficult to retrieve or insufficiently detailed. The SpringerReference program, in which this book is published, offers an ideal format for overcoming these limitations since it combines thorough coverage with access to living editions constantly updated chapter by chapter via a dynamic peer-review process, ensuring that information remains current and pertinent.
Popular understanding holds that genetic changes create cancer. James DeGregori uses evolutionary principles to propose a new way of thinking about cancerÕs occurrence. Cancer is as much a disease of evolution as it is of mutation, one in which mutated cells outcompete healthy cells in the ecosystem of the bodyÕs tissues. His theory ties cancerÕs progression, or lack thereof, to evolved strategies to maximize reproductive success. Through natural selection, humans evolved genetic programs to maintain bodily health for as long as necessary to increase the odds of passing on our genesÑbut not much longer. These mechanisms engender a tissue environment that favors normal stem cells over precancerous ones. Healthy tissues thwart cancer cellsÕ ability to outcompete their precancerous rivals. But as our tissues age or accumulate damage from exposures such as smoking, normal stem cells find themselves less optimized to their ecosystem. Cancer-causing mutations can now help cells adapt to these altered tissue environments, and thus outcompete normal cells. Just as changes in a speciesÕ habitat favor the evolution of new species, changes in tissue environments favor the growth of cancerous cells. DeGregoriÕs perspective goes far in explaining who gets cancer, when it appears, and why. While we cannot avoid mutations, it may be possible to sustain our tissuesÕ natural and effective system of defense, even in the face of aging or harmful exposures. For those interested in learning how cancers arise within the human body, the insights in Adaptive Oncogenesis offer a compelling perspective.
''An exciting glance at key issues in contemporary hematopoiesis.'' -The Quarterly Review of Biology
An essential resource for all scientists researching cellular responses to DNA damage. • Introduces important new material reflective of the major changes and developments that have occurred in the field over the last decade. • Discussed the field within a strong historical framework, and all aspects of biological responses to DNA damage are detailed. • Provides information on covering sources and consequences of DNA damage; correcting altered bases in DNA: DNA repair; DNA damage tolerance and mutagenesis; regulatory responses to DNA damage in eukaryotes; and disease states associated with defective biological responses to DNA damage.
This detailed volume explores methods and protocols that aim to increase our understanding of how cells enter a quiescent state during homeostasis and how cells exit quiescence and re-enter differentiating cell divisions to restore damaged tissues, essential for developing new approaches in regenerative medicine in the future. The chapters in this book were designed to address cellular quiescence in prokaryote and eukaryote organisms, detection of quiescence (Hoechst/pyronin Y, FUCCI, CFSE, BrdU, H2B-GFP, CyTOF), quiescence in stem cells (skin, intestinal, neuronal, hematopoietic), genomic regulation (gene expression, transcription factors, lncRNA, RNA methylation), as well as analysis of the heterogeneity of quiescence by computer modeling. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Cellular Quiescence: Methods and Protocols offers a broad view of basic and cutting-edge technology to inspire research in this emerging field of cell biology.
This volume describes the latest findings on transcriptional and translational regulation of stem cells. Both transcriptional activators and repressors have been shown to be crucial for the maintenance of the stem cell state. A key element of stem cell maintenance is repression of differentiation factors or developmental genes – achieved transcriptionally, epigenetically by the Polycomb complex, and post-transcriptionally by RNA-binding proteins and microRNAs. This volume takes two approaches to this topic – (1) illustrating the general principles outlined above through a series of different stem cell examples – embryonic, iPS and adult stem cells, and (2) describing several molecular families that have been shown to have roles in regulation of multiple stem cell populations.
Stem cells are the focus of intense interest from a growing, multidisciplinary community of investigators with new tools for isolating and characterizing these elusive cell types. This volume, which features contributions from many of the world's leading laboratories, provides a uniquely broad and authoritative basis for understanding the biology of stem cells and the current excitement about their potential for clinical exploitation. It is an essential work of reference for investigators in embryology, hematology, and neurobiology, and their potential for clinical exploitation. It is an essential work of reference for investigators in embryology, hematology, and neurobiology, and their collaborators in the emerging field of regenerative medicine.
This book collects articles on the biology of hematopoietic stem cells during embryonic development, reporting on fly, fish, avian and mammalian models. The text invites a comparative overview of hematopoietic stem cell generation in the different classes, emphasizing conserved trends in development. The book reviews current knowledge on human hematopoietic development and discusses recent breakthroughs of relevance to both researchers and clinicians.
Stem cell biology has drawn tremendous interest in recent years as it promises cures for a variety of incurable diseases. This book deals with the basic and clinical aspects of stem cell research and involves work on the full spectrum of stem cells isolated today. It also covers the conversion of stem cell types into a variety of useful tissues which may be used in the future for transplantation therapy. It is thus aimed at undergraduates, postgraduates, scientists, embryologists, doctors, tissue engineers and anyone who wishes to gain some insight into stem cell biology. This book is important as it is comprehensive and covers all aspects of stem cell biology, from basic research to clinical applications. It will have 33 chapters written by renowned stem cell scientists worldwide. It will be up-to-date and all the chapters include self-explanatory figures, color photographs, graphics and tables. It will be easy to read and give the reader a complete understanding and state of the art of the exciting science and its applications.
Stem cells have been gaining a lot of attention in recent years. Their unique potential to self-renew and differentiate has turned them into an attractive model for the study of basic biological questions such as cell division, replication, transcription, cell fate decisions, and more. With embryonic stem (ES) cells that can generate each cell type in the mammalian body and adult stem cells that are able to give rise to the cells within a given lineage, basic questions at different developmental stages can be addressed. Importantly, both adult and embryonic stem cells provide an excellent tool for cell therapy, making stem cell research ever more pertinent to regenerative medicine. As the title The Cell Biology of Stem Cells suggests, our book deals with multiple aspects of stem cell biology, ranging from their basic molecular characteristics to the in vivo stem cell trafficking of adult stem cells and the adult stem-cell niche, and ends with a visit to regeneration and cell fate reprogramming. In the first chapter, “Early embryonic cell fate decisions in the mouse”, Amy Ralson and Yojiro Yamanaka describe the mechanisms that support early developmental decisions in the mouse pre-implantation embryo and the current understanding of the source of the most immature stem cell types, which includes ES cells, trophoblast stem (TS) cells and extraembryonic endoderm stem (XEN) cells.