Download Free Intracellular Traffic And Neurodegenerative Disorders Book in PDF and EPUB Free Download. You can read online Intracellular Traffic And Neurodegenerative Disorders and write the review.

This book covers the past, present and future of the intra-cellular trafficking field, which has made a quantum leap in the last few decades. It details how the field has developed and evolved as well as examines future directions.
Many adult onset neurodegenerative diseases arise from the accumulation of misfolded peptides. This book examines the role sub-cellular trafficking pathways play in the pathological accumulation of these misfolded proteins and in attempts to clear them.
The Molecular and Cellular Basis of Neurodegenerative Diseases: Underlying Mechanisms presents the pathology, genetics, biochemistry and cell biology of the major human neurodegenerative diseases, including Alzheimer's, Parkinson's, frontotemporal dementia, ALS, Huntington's, and prion diseases. Edited and authored by internationally recognized leaders in the field, the book's chapters explore their pathogenic commonalities and differences, also including discussions of animal models and prospects for therapeutics. Diseases are presented first, with common mechanisms later. Individual chapters discuss each major neurodegenerative disease, integrating this information to offer multiple molecular and cellular mechanisms that diseases may have in common. This book provides readers with a timely update on this rapidly advancing area of investigation, presenting an invaluable resource for researchers in the field. - Covers the spectrum of neurodegenerative diseases and their complex genetic, pathological, biochemical and cellular features - Focuses on leading hypotheses regarding the biochemical and cellular dysfunctions that cause neurodegeneration - Details features, advantages and limitations of animal models, as well as prospects for therapeutic development - Authored by internationally recognized leaders in the field - Includes illustrations that help clarify and consolidate complex concepts
The discovery of dopamine in 1957-1958 was one of the seminal events in the development of modern neuroscience, and has been extremely important for the development of modern therapies of neurological and psychiatric disorders. Dopamine has a fundamental role in almost all aspects of behavior: from motor control to mood regulation, cognition and addiction and reward, and dopamine research has been unique within the neurosciences in the way it has bridged basic science and clinical practice. Over the decades research into the role of dopamine in health and disease has been in the forefront of modern neuroscience. The Dopamine Handbook is the first single-volume publication to capture current progress and excitement in this dynamic research field.
The synucleinopathy sporadic Parkinson’s disease (sPD) is the second most frequent degenerative disorder of the human nervous system after Alzheimer’s disease. The propensity for developing sPD exists in all ethnic groups worldwide, and the prevalence of the disorder increases considerably with age, thereby imposing an enormous social and economic burden on societies with increased life expectancy. The sPD-associated pathological process is progressive, does not go into remission, and can take decades to reach its culmination if it is not be terminated prematurely by death owing to other causes. Against the background of the normal morphology and anatomy, the authors analyze the pathoanatomy of sPD in the nervous system at various neuropathological stages and summarize the potential functional consequences of the lesions.
This book provides a cutting-edge review of polyglutamine disorders. It primarily focuses on two main aspects: (1) the mechanisms underlying the pathologies’ development and progression, and (2) the therapeutic strategies that are currently being explored to stop or delay disease progression. Polyglutamine (polyQ) disorders are a group of inherited neurodegenerative diseases with a fatal outcome that are caused by an abnormal expansion of a coding trinucleotide repeat (CAG), which is then translated in an abnormal protein with an elongated glutamine tract (Q). To date, nine polyQ disorders have been identified and described: dentatorubral-pallidoluysian atrophy (DRPLA); Huntington’s disease (HD); spinal–bulbar muscular atrophy (SBMA); and six spinocerebellar ataxias (SCA 1, 2, 3, 6, 7, and 17). The genetic basis of polyQ disorders is well established and described, and despite important advances that have opened up the possibility of generating genetic models of the disease, the mechanisms that cause neuronal degeneration are still largely unknown and there is currently no treatment available for these disorders. Further, it is believed that the different polyQ may share some mechanisms and pathways contributing to neurodegeneration and disease progression.
The brain is the most complex organ in our body. Indeed, it is perhaps the most complex structure we have ever encountered in nature. Both structurally and functionally, there are many peculiarities that differentiate the brain from all other organs. The brain is our connection to the world around us and by governing nervous system and higher function, any disturbance induces severe neurological and psychiatric disorders that can have a devastating effect on quality of life. Our understanding of the physiology and biochemistry of the brain has improved dramatically in the last two decades. In particular, the critical role of cations, including magnesium, has become evident, even if incompletely understood at a mechanistic level. The exact role and regulation of magnesium, in particular, remains elusive, largely because intracellular levels are so difficult to routinely quantify. Nonetheless, the importance of magnesium to normal central nervous system activity is self-evident given the complicated homeostatic mechanisms that maintain the concentration of this cation within strict limits essential for normal physiology and metabolism. There is also considerable accumulating evidence to suggest alterations to some brain functions in both normal and pathological conditions may be linked to alterations in local magnesium concentration. This book, containing chapters written by some of the foremost experts in the field of magnesium research, brings together the latest in experimental and clinical magnesium research as it relates to the central nervous system. It offers a complete and updated view of magnesiums involvement in central nervous system function and in so doing, brings together two main pillars of contemporary neuroscience research, namely providing an explanation for the molecular mechanisms involved in brain function, and emphasizing the connections between the molecular changes and behavior. It is the untiring efforts of those magnesium researchers who have dedicated their lives to unraveling the mysteries of magnesiums role in biological systems that has inspired the collation of this volume of work.
It has become evident over the last years that abnormalities in RNA processing play a fundamental part in the pathogenesis of neurodegenerative diseases. Cellular viability depends on proper regulation of RNA metabolism and subsequent protein synthesis, which requires the interplay of many processes including transcription, pre--‐mRNA splicing, mRNA editing as well as mRNA stability, transport and translation. Dysfunction in any of these processes, often caused by mutations in the coding and non--‐ coding RNAs, can be very destructive to the cellular environment and consequently impair neural viability. The result of this RNA toxicity can lead to a toxic gain of function or a loss of function, depending on the nature of the mutation. For example, in repeat expansion disorders, such as the newly discovered hexanucleotide repeat expansion in theC9orf72 gene found in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), a toxic gain of function leads to the formation of RNA foci and the sequestration of RNA binding proteins (RBPs). This in return leads to a loss of function of those RBPs, which is hypothesized to play a significant part in the disease progression of ALS and FTD. Other toxicities arising from repeat expansions are the formation of RNA foci, bi--‐directional transcription and production of repeat associated non--‐ATG (RAN) translation products. This book will touch upon most of these disease mechanisms triggered by aberrant RNA metabolism and will therefore provide a broad perspective of the role of RNA processing and its dysfunction in a variety of neurodegenerative disorders, including ALS, FTD, Alzheimer’s disease, Huntington’s disease, spinal muscular atrophy, myotonic dystrophy and ataxias. The proposed authors are leading scientists in the field and are expected to not only discuss their own work, but to be inclusive of historic as well as late breaking discoveries. The compiled chapters will therefore provide a unique collection of novel studies and hypotheses aimed to describe the consequences of altered RNA processing events and its newest molecular players and pathways.
This book provides the first comprehensive coverage of the quickly evolving research field of membrane contact sites (MCS). A total of 16 chapters explain their organization and role and unveil the significance of MCS for various diseases. MCS, the intracellular structures where organellar membranes come in close contact with one another, mediate the exchange of proteins, lipids, and ions. Via these functions, MCS are critical for the survival and the growth of the cell. Owing to that central role in the functioning of cells, MCS dysfunctions lead to important defects of human physiology, influence viral and bacterial infection, and cause disease such as inflammation, type II diabetes, neurodegenerative disorders, and cancer. To approach such a multifaceted topic, this volume assembles a series of chapters dealing with the full array of research about MCS and their respective roles for diseases. Most chapters also introduce the history and the state of the art of MCS research, which will initiate discussion points for the respective types of MCS for years to come. This work will appeal to all cell biologists as well as researchers on diseases that are impacted by MCS dysfunction. Additionally, it will stimulate graduate students and postdocs who will energize, drive, and develop the research field in the near future.
This book presents essential studies and cutting-edge research results on tau, which is attracting increasing interest as a target for the treatment of Alzheimer's disease. Tau is well known as a microtubule-associated protein that is predominantly localized in the axons of neurons. In various forms of brain disease, neuronal loss occurs, with deposition of hyperphosphorylated tau in the remaining neurons. Important questions remain regarding the way in which tau forms hyperphosphorylated and fibrillar deposits in neurons, and whether tau aggregation represents the toxic pathway leading to neuronal death. With the help of new technologies, researchers are now solving these long-standing questions. In this book, readers will find the latest expert knowledge on all aspects of tau biology, including the structure and role of the tau molecule, tau localization and function, the pathology, drivers, and markers of tauopathies, tau aggregation, and treatments targeting tau. Tau Biology will be an invaluable source of information and fresh ideas for those involved in the development of more effective therapies and for all who seek a better understanding of the biology of the aging brain.