Download Free Intracellular Delivery Vehicles Based On 2 Methacryloyloxyethyl Phosphorylcholine Book in PDF and EPUB Free Download. You can read online Intracellular Delivery Vehicles Based On 2 Methacryloyloxyethyl Phosphorylcholine and write the review.

This volume is a continuation of Volume 1 following the previously published Editorial. More emphasis is given to novel nanocarrier designs, their characterization and function, and applications for drug discovery and treatment. A number of chapters will deal with nanofibers as a new major application within the biomedical field with a very high success rate particularly in wound healing and diabetic foot and spine injuries. A major new subdivision will deal with mathematical methods for the assembly of nanocarriers both for simulation and function.
Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications: Volume Two: Advanced Nanocarriers for Therapeutics discusses, in detail, the recent trends in designing dual and multi-responsive polymers and nanoparticles for safe drug delivery. Chapters cover dual-responsive polymeric nanocarriers for drug delivery and their different stimuli, multi-responsive polymeric nanocarriers, and the therapeutic applications of stimuli-responsive polymers. With an emphasis on advanced medical applications and synergistic operational and technological methodologies for the improvement of polymers systems for the production of stimuli-responsive polymers, this book is essential reading for materials scientists and researchers working in the drug delivery and pharmaceutical industries. As innovation and development in the area of stimuli responsive polymer-based nanomaterials for drug delivery is moving fast and there is an increased global demand for biodegradable and biocompatible responsive polymers and nanoparticles for safe drug delivery, users will find this to be a timely resource. Focusses on the most advanced technologies, recent evaluation methods, technical aspects, and advanced synthesis techniques stimuli-responsive polymers Examines advanced medical applications of stimuli responsive polymers Analyzes synergistic operational and technological methodologies for the improvement of polymer systems for the production of stimuli-responsive polymers in drug delivery
Polymers have played a critical role in the rational design and application of drug delivery systems that increase the efficacy and reduce the toxicity of new and conventional therapeutics. Beginning with an introduction to the fundamentals of drug delivery, Engineering Polymer Systems for Improved Drug Delivery explores traditional drug delivery techniques as well as emerging advanced drug delivery techniques. By reviewing many types of polymeric drug delivery systems, and including key points, worked examples and homework problems, this book will serve as a guide to for specialists and non-specialists as well as a graduate level text for drug delivery courses.
The third edition of a bestseller, this substantially expanded reference, now in two volumes, presents the latest polymer developments and most up-to-date applications of polymeric biomaterials in medicine. This volume addresses the processing of polymeric biomaterials into specific forms that ensure biocompatibility and biodegradability for various uses in the medical and pharmaceutical arenas. It covers applications such as drug delivery, tissue engineering, anticancer therapies, hydrogels, and bioartificial organs. This comprehensive resource includes state-of-the-art research and successful breakthroughs in applications that have occurred in the last ten years.
Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors addresses brain anatomy and tumors and the progress and challenges in delivering drugs across the blood brain barrier. Several chapters are devoted to the latest technologies and advances in nanotechnology, along with practical solutions on how to design more effective nanocarriers for drug and gene delivery. This valuable resource prepares readers to develop novel drug delivery systems for the treatment of brain tumors that further promote the latest nanomedical technologies. Addresses the progress and challenges inherent in delivering drugs across the blood brain barrier and offers strategies to maximize effectiveness Draws upon the experience and expertise of international scientists working in the fields of drug delivery and nanomedicine Considers the future possibilities of nanotechnology for delivering nanocarriers that better diagnose and treat brain tumors
An authoritative resource that offers an understanding of the chemistry, properties and applications of temperature-responsive polymers With contributions from a distinguished panel of experts, Temperature-Responsive Polymers puts the focus on hydrophilic polymers capable of changing their physicochemical properties in response to changes in environmental temperature. The contributors review the chemistry of these systems, and discuss a variety of synthetic approaches for preparation of temperature-responsive polymers, physicochemical methods of their characterisation and potential applications in biomedical areas. The text reviews a wide-variety of topics including: The characterisation of temperature-responsive polymers; Infrared and Raman spectroscopy; Applications of temperature-responsive polymers grafted onto solid core nanoparticles; and much more. The contributors also explore how temperature-responsive polymers can be used in the biomedical field for applications such as tissue engineering. This important resource: Offers an important synthesis of the current research on temperature-responsive polymers Covers the chemistry, the synthetic approaches for presentation and the physiochemical method of temperature-responsive polymers Includes a review of the fundamental characteristics of temperature-responsive polymers Explores many of the potential applications in biomedical science, including drug delivery and gene therapy Written for polymer scientists in both academia and industry as well as postgraduate students working in the area of stimuli-responsive materials, this vital text offers an exploration of the chemistry, properties and current applications of temperature-responsive polymers.
Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering. Molecular, Cellular, and Tissue Engineering, the fourth volume of the handbook, presents material from respected scientists with diverse backgrounds in molecular biology, transport phenomena, physiological modeling, tissue engineering, stem cells, drug delivery systems, artificial organs, and personalized medicine. More than three dozen specific topics are examined, including DNA vaccines, biomimetic systems, cardiovascular dynamics, biomaterial scaffolds, cell mechanobiology, synthetic biomaterials, pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, nanobiomaterials for tissue engineering, biomedical imaging of engineered tissues, gene therapy, noninvasive targeted protein and peptide drug delivery, cardiac valve prostheses, blood substitutes, artificial skin, molecular diagnostics in personalized medicine, and bioethics.
This book features a special subsection of Nanomedicine, an application of nanotechnology to achieve breakthroughs in healthcare. It exploits the improved and often novel physical, chemical and biological properties of materials only existent at the nanometer scale. As a consequence of small scale, nanosystems in most cases are efficiently uptaken by cells and appear to act at the intracellular level. Nanotechnology has the potential to improve diagnosis, treatment and follow-up of diseases, and includes targeted drug delivery and regenerative medicine; it creates new tools and methods that impact significantly upon existing conservative practices. This volume is a collection of authoritative reviews. In the introductory section we define the field (intracellular delivery). Then, the fundamental routes of nanodelivery devices, cellular uptake, types of delivery devices, particularly in terms of localized cellular delivery, both for small drug molecules, macromolecular drugs and genes; at the academic and applied levels, are covered. The following section is dedicated to enhancing delivery via special targeting motifs followed by the introduction of different types of intracellular nanodelivery devices (e.g. a brief description of their chemistry) and ways of producing these different devices. Finally, we put special emphasis on particular disease states and on other biomedical applications, whilst diagnostic and sensing issues are also included. Intracellular delivery / therapy is a highly topical which will stir great interest. Intracellular delivery enables much more efficient drug delivery since the impact (on different organelles and sites) is intracellular as the drug is not supplied externally within the blood stream. There is great potential for targeted delivery with improved localized delivery and efficacy.