Download Free Into Complexity Book in PDF and EPUB Free Download. You can read online Into Complexity and write the review.

Human beings cannot live without travelling. Nowadays, old, outdated ideas are waning and it is time for an intellectual journey into complexity. Life and all that stems from it is far from equilibrium, in a continuous search for the new and the improbable. This book is a smooth journey into the complexity theory addressed to managers, entrepreneurs, practitioners; especially, it is an invitation to embark on the continuous search for the creative moment, where each arrival is a new departure. Those who want to imagine their future, those who have a dream will be inspired to venture into the mysterious and charming land at the edge of chaos, being aware that their future may also depend on chance.
“If you liked Chaos, you’ll love Complexity. Waldrop creates the most exciting intellectual adventure story of the year” (The Washington Post). In a rarified world of scientific research, a revolution has been brewing. Its activists are not anarchists, but rather Nobel Laureates in physics and economics and pony-tailed graduates, mathematicians, and computer scientists from all over the world. They have formed an iconoclastic think-tank and their radical idea is to create a new science: complexity. They want to know how a primordial soup of simple molecules managed to turn itself into the first living cell—and what the origin of life some four billion years ago can tell us about the process of technological innovation today. This book is their story—the story of how they have tried to forge what they like to call the science of the twenty-first century. “Lucidly shows physicists, biologists, computer scientists and economists swapping metaphors and reveling in the sense that epochal discoveries are just around the corner . . . [Waldrop] has a special talent for relaying the exhilaration of moments of intellectual insight.” —The New York Times Book Review “Where I enjoyed the book was when it dove into the actual question of complexity, talking about complex systems in economics, biology, genetics, computer modeling, and so on. Snippets of rare beauty here and there almost took your breath away.” —Medium “[Waldrop] provides a good grounding of what may indeed be the first flowering of a new science.” —Publishers Weekly
Briefly, we review the basic elements of computability theory and prob ability theory that are required. Finally, in order to place the subject in the appropriate historical and conceptual context we trace the main roots of Kolmogorov complexity. This way the stage is set for Chapters 2 and 3, where we introduce the notion of optimal effective descriptions of objects. The length of such a description (or the number of bits of information in it) is its Kolmogorov complexity. We treat all aspects of the elementary mathematical theory of Kolmogorov complexity. This body of knowledge may be called algo rithmic complexity theory. The theory of Martin-Lof tests for random ness of finite objects and infinite sequences is inextricably intertwined with the theory of Kolmogorov complexity and is completely treated. We also investigate the statistical properties of finite strings with high Kolmogorov complexity. Both of these topics are eminently useful in the applications part of the book. We also investigate the recursion theoretic properties of Kolmogorov complexity (relations with Godel's incompleteness result), and the Kolmogorov complexity version of infor mation theory, which we may call "algorithmic information theory" or "absolute information theory. " The treatment of algorithmic probability theory in Chapter 4 presup poses Sections 1. 6, 1. 11. 2, and Chapter 3 (at least Sections 3. 1 through 3. 4).
Here is an accessible, algorithmically oriented guide to some of the most interesting techniques of complexity theory. The book shows that simple algorithms are at the heart of complexity theory. The book is organized by technique rather than by topic. Each chapter focuses on one technique: what it is, and what results and applications it yields.
Unexpected discoveries in nonequilibrium physics and nonlinear dynamics are changing our understanding of complex phenomena. Recent research has revealed fundamental new properties of matter in far-from-equilibrium conditions, and the prevalence of instability-where small changes in initial conditions may lead to amplified effects.
The new branch of science which will reveal how to avoid the rush hour, overcome cancer, and find the perfect date What do traffic jams, stock market crashes, and wars have in common? They are all explained using complexity, an unsolved puzzle that many researchers believe is the key to predicting - and ultimately solving - everything from terrorist attacks and pandemic viruses right down to rush hour traffic congestion. Complexity is considered by many to be the single most important scientific development since general relativity and promises to make sense of no less than the very heart of the Universe. Using it, scientists can find order emerging from seemingly random interactions of all kinds, from something as simple as flipping coins through to more challenging problems such as predicting shopping habits, the patterns in modern jazz, and the growth of cancer tumours.
We live in a moment of unprecedented complexity, an era in which change occurs faster than our ability to comprehend it. With "The Moment of Complexity", Mark C. Taylor offers a map for the unfamiliar terrain opening in our midst, unfolding an original philosophy of our time through a remarkable synthesis of science and culture. According to Taylor, complexity is not just a breakthrough scientific concept but the defining quality of the post-Cold War era. The flux of digital currents swirling around us, he argues, has created a new network culture with its own distinctive logic and dynamic.
The book describes what it means to say the world is complex and explores what that means for managers, policy makers and individuals. The first part of the book is about the theory and ideas of complexity. This is explained in a way that is thorough but not mathematical. It compares differing approaches, and also provides a historical perspective, showing how such thinking has been around since the beginning of civilisation. It emphasises the difference between a complexity worldview and the dominant mechanical worldview that underpins much of current management practice. It defines the complexity worldview as recognising the world is interconnected, shaped by history and the particularities of context. The comparison of the differing approaches to modelling complexity is unique in its depth and accessibility. The second part of the book uses this lens of complexity to explore issues in the fields of management, strategy, economics, and international development. It also explores how to facilitate others to recognise the implications of adopting a complex rather than a mechanical worldview and suggests methods of research to explore systemic, path-dependent emergent aspects of situations. The authors of this book span both science and management, academia and practice, thus the explanations of science are authoritative and yet the examples of changing how you live and work in the world are real and accessible. The aim of the book is to bring alive what complexity is all about and to illustrate the importance of loosening the grip of a modernist worldview with its hope for prediction, certainty and control.
Since the first edition sold out in less than a year, we now present the revised second edition of Mainzer's popular book. The theory of nonlinear complex systems has become a successful problem-solving approach in the natural sciences from laser physics, quantum chaos, and meteorology to computer simulations of cell growth in biology. It is now recognized that many of our social, ecological, and political problems are also of a global, complex, and nonlinear nature. And one of the most exciting contemporary topics is the idea that even the human mind is governed largely by the nonlinear dynamics of complex systems. In this wide-ranging but concise treatment, Prof. Mainzer discusses, in a nontechnical language, the common framework behind these endeavors. Emphasis is given to the evolution of new structures in natural and cultural systems and we see clearly how the new integrative approach can give insights not available from traditional reductionistic methods.
The level of complexity in most organizations today is staggering-and it's only getting worse. There are so many choices to be made, people to involve, processes to manage, and facts to analyze, it's impossible to get things done. And in today's hypercompetitive world, that can be fatal. Yet complexity doesn't happen on its own. Managers unwittingly create it, often through well-intended decisions. In Simply Effective, Ron Ashkenas provides a playbook for regaining control, focused on the four major causes of complexity: -Constant changes in organizational structures -Proliferation of products and services -Evolution of business processes -Time-wasting managerial behaviors The author provides a diagnostic for identifying how these causes of complexity are affecting your organization-and presents practical tactics for combating each one. Ashkenas also explains how to craft a strategy that will make simplification an ongoing driver of your company's success-no matter where you work in your organization. Abundant examples from companies like ConAgra Foods, GE, Cisco, Zurich Financial Services, and Johnson & Johnson illuminate his points. A crucial resource in today's overly complex age, Simply Effective should be required reading for everyone on your management team.