Download Free Interpretations Of Probability Book in PDF and EPUB Free Download. You can read online Interpretations Of Probability and write the review.

This is the first fundamental book devoted to non-Kolmogorov probability models. It provides a mathematical theory of negative probabilities, with numerous applications to quantum physics, information theory, complexity, biology and psychology. The book also presents an interesting model of cognitive information reality with flows of information probabilities, describing the process of thinking, social, and psychological phenomena.
It is a commonplace that scientific inquiry makes extensive use of probabilities, many of which seem to be objective chances, describing features of reality that are independent of our minds. Such chances appear to have a number of paradoxical or puzzling features: they appear to be mind-independent facts, but they are intimately connected with rational psychology; they display a temporal asymmetry, but they are supposed to be grounded in physical laws that are time-symmetric; and chances are used to explain and predict frequencies of events, although they cannot be reduced to those frequencies. This book offers an accessible and non-technical introduction to these and other puzzles. Toby Handfield engages with traditional metaphysics and philosophy of science, drawing upon recent work in the foundations of quantum mechanics and thermodynamics to provide a novel account of objective probability that is empirically informed without requiring specialist scientific knowledge.
Probability is increasingly important for our understanding of the world. What is probability? How do we model it, and how do we use it? Timothy Childers presents a lively introduction to the foundations of probability and to philosophical issues it raises. He keeps technicalities to a minimum, and assumes no prior knowledge of the subject. He explains the main interpretations of probability-frequentist, propensity, classical, Bayesian, and objective Bayesian-and uses stimulating examples to bring the subject to life. All students of philosophy will benefit from an understanding of probability, and this is the book to provide it.
This Element has two main aims. The first one (sections 1-7) is an historically informed review of the philosophy of probability. It describes recent historiography, lays out the distinction between subjective and objective notions, and concludes by applying the historical lessons to the main interpretations of probability. The second aim (sections 8-13) focuses entirely on objective probability, and advances a number of novel theses regarding its role in scientific practice. A distinction is drawn between traditional attempts to interpret chance, and a novel methodological study of its application. A radical form of pluralism is then introduced, advocating a tripartite distinction between propensities, probabilities and frequencies. Finally, a distinction is drawn between two different applications of chance in statistical modelling which, it is argued, vindicates the overall methodological approach. The ensuing conception of objective probability in practice is the 'complex nexus of chance'.
Sample Text
This anthology is the first book to give a balanced overview of the competing theories of degrees of belief. It also explicitly relates these debates to more traditional concerns of the philosophy of language and mind and epistemic logic.
A textbook for an introductory undergraduate course in probability theory, first published in 1970, and revised in 1976. The novelty of the approach is its basis on the subject's expectation rather than on probability measures. Assumes a fair degree of mathematical sophistication. Annotation copyrighted by Book News, Inc., Portland, OR
A Logical Introduction to Probability and Induction is a textbook on the mathematics of the probability calculus and its applications in philosophy. On the mathematical side, the textbook introduces these parts of logic and set theory that are needed for a precise formulation of the probability calculus. On the philosophical side, the main focus is on the problem of induction and its reception in epistemology and the philosophy of science. Particular emphasis is placed on the means-end approach to the justification of inductive inference rules. In addition, the book discusses the major interpretations of probability. These are philosophical accounts of the nature of probability that interpret the mathematical structure of the probability calculus. Besides the classical and logical interpretation, they include the interpretation of probability as chance, degree of belief, and relative frequency. The Bayesian interpretation of probability as degree of belief locates probability in a subject's mind. It raises the question why her degrees of belief ought to obey the probability calculus. In contrast to this, chance and relative frequency belong to the external world. While chance is postulated by theory, relative frequencies can be observed empirically. A Logical Introduction to Probability and Induction aims to equip students with the ability to successfully carry out arguments. It begins with elementary deductive logic and uses it as basis for the material on probability and induction. Throughout the textbook results are carefully proved using the inference rules introduced at the beginning, and students are asked to solve problems in the form of 50 exercises. An instructor's manual contains the solutions to these exercises as well as suggested exam questions. The book does not presuppose any background in mathematics, although sections 10.3-10.9 on statistics are technically sophisticated and optional. The textbook is suitable for lower level undergraduate courses in philosophy and logic.
Our time is characterized by an explosive growth in the use of ever more complicated and sophisticated (computer) models. These models rely on dynamical systems theory for the interpretation of their results and on probability theory for the quantification of their uncertainties. A conscientious and intelligent use of these models requires that both these theories are properly understood. This book is to provide such understanding. It gives a unifying treatment of dynamical systems theory and probability theory. It covers the basic concepts and statements of these theories, their interrelations, and their applications to scientific reasoning and physics. The book stresses the underlying concepts and mathematical structures but is written in a simple and illuminating manner without sacrificing too much mathematical rigor. The book is aimed at students, post-docs, and researchers in the applied sciences who aspire to better understand the conceptual and mathematical underpinnings of the models that they use. Despite the peculiarities of any applied science, dynamics and probability are the common and indispensable tools in any modeling effort. The book is self-contained, with many technical aspects covered in appendices, but does require some basic knowledge in analysis, linear algebra, and physics. Peter Müller, now a professor emeritus at the University of Hawaii, has worked extensively on ocean and climate models and the foundations of complex system theories.
This is one of the most comprehensive collections of critical essays to be published on the philosophy of Karl Popper.