Download Free Internet Of Healthcare Things Book in PDF and EPUB Free Download. You can read online Internet Of Healthcare Things and write the review.

INTERNET OF HEALTHCARE THINGS The book addresses privacy and security issues providing solutions through authentication and authorization mechanisms, blockchain, fog computing, machine learning algorithms, so that machine learning-enabled IoT devices can deliver information concealed in data for fast, computerized responses and enhanced decision-making. The main objective of this book is to motivate healthcare providers to use telemedicine facilities for monitoring patients in urban and rural areas and gather clinical data for further research. To this end, it provides an overview of the Internet of Healthcare Things (IoHT) and discusses one of the major threats posed by it, which is the data security and data privacy of health records. Another major threat is the combination of numerous devices and protocols, precision time, data overloading, etc. In the IoHT, multiple devices are connected and communicate through certain protocols. Therefore, the application of emerging technologies to mitigate these threats and provide secure data communication over the network is discussed. This book also discusses the integration of machine learning with the IoHT for analyzing huge amounts of data for predicting diseases more accurately. Case studies are also given to verify the concepts presented in the book. Audience Researchers and industry engineers in computer science, artificial intelligence, healthcare sector, IT professionals, network administrators, cybersecurity experts.
This comprehensive book focuses on better big-data security for healthcare organizations. Following an extensive introduction to the Internet of Things (IoT) in healthcare including challenging topics and scenarios, it offers an in-depth analysis of medical body area networks with the 5th generation of IoT communication technology along with its nanotechnology. It also describes a novel strategic framework and computationally intelligent model to measure possible security vulnerabilities in the context of e-health. Moreover, the book addresses healthcare systems that handle large volumes of data driven by patients’ records and health/personal information, including big-data-based knowledge management systems to support clinical decisions. Several of the issues faced in storing/processing big data are presented along with the available tools, technologies and algorithms to deal with those problems as well as a case study in healthcare analytics. Addressing trust, privacy, and security issues as well as the IoT and big-data challenges, the book highlights the advances in the field to guide engineers developing different IoT devices and evaluating the performance of different IoT techniques. Additionally, it explores the impact of such technologies on public, private, community, and hybrid scenarios in healthcare. This book offers professionals, scientists and engineers the latest technologies, techniques, and strategies for IoT and big data.
Written by a range of researchers and practitioners in the field of IoT, data mining, and machine learning, this edited book provides a systemic review of trends, challenges and future directions of IoMT enabling technologies, such as machine learning, wireless communications, and network security.
INTERNET OF MEDICAL THINGS (IOMT) Providing an essential addition to the reference material available in the field of IoMT, this timely publication covers a range of applied research on healthcare, biomedical data mining, and the security and privacy of health records. With their ability to collect, analyze and transmit health data, IoMT tools are rapidly changing healthcare delivery. For patients and clinicians, these applications are playing a central part in tracking and preventing chronic illnesses — and they are poised to evolve the future of care. In this book, the authors explore the potential applications of a wave of sensor-based tools—including wearables and stand-alone devices for remote patient monitoring—and the marriage of internet-connected medical devices with patient information that ultimately sets the IoMT ecosystem apart. This book demonstrates the connectivity between medical devices and sensors is streamlining clinical workflow management and leading to an overall improvement in patient care, both inside care facilities and in remote locations.
This book looks at the growing segment of Internet of Things technology (IoT) known as Internet of Medical Things (IoMT), an automated system that aids in bridging the gap between isolated and rural communities and the critical healthcare services that are available in more populated and urban areas. Many technological aspects of IoMT are still being researched and developed, with the objective of minimizing the cost and improving the performance of the overall healthcare system. This book focuses on innovative IoMT methods and solutions being developed for use in the application of healthcare services, including post-surgery care, virtual home assistance, smart real-time patient monitoring, implantable sensors and cameras, and diagnosis and treatment planning. It also examines critical issues around the technology, such as security vulnerabilities, IoMT machine learning approaches, and medical data compression for lossless data transmission and archiving. Internet of Medical Things is a valuable reference for researchers, students, and postgraduates working in biomedical, electronics, and communications engineering, as well as practicing healthcare professionals.
Health surveillance and intelligence play an important role in modern health systems as more data must be collected and analyzed. It is crucial that this data is interpreted and analyzed effectively and efficiently in order to assist with diagnoses and predictions. Diagnostic Applications of Health Intelligence and Surveillance Systems is an essential reference book that examines recent studies that are driving artificial intelligence in the health sector and helping practitioners to predict and diagnose diseases. Chapters within the book focus on health intelligence and how health surveillance data can be made useful and meaningful. Covering topics that include computational intelligence, data analytics, mobile health, and neural networks, this book is crucial for healthcare practitioners, IT specialists, academicians, researchers, and students.
The internet of things (IoT) has had a major impact on academic and industrial fields. Applying these technologies to healthcare systems reduces medical costs while enriching the patient-centric approach to medicine, allowing for better overall healthcare proficiency. However, usage of IoT in healthcare is still suffering from significant challenges with respect to the cost and accuracy of medical sensors, non-standard IoT system architectures, assorted wearable devices, the huge volume of generated data, and interoperability issues. Incorporating the Internet of Things in Healthcare Applications and Wearable Devices is an essential publication that examines existing challenges and provides solutions for building smart healthcare systems with the latest IoT-enabled technology and addresses how IoT improves the proficiency of healthcare with respect to wireless sensor networks. While highlighting topics including mobility management, sensor integration, and data analytics, this book is ideally designed for computer scientists, bioinformatics analysts, doctors, nurses, hospital executives, medical students, IT specialists, software developers, computer engineers, industry professionals, academicians, researchers, and students seeking current research on how these emerging wireless technologies improve efficiency within the healthcare domain.
Internet of things (IoT) applications employed for healthcare generate a huge amount of data that needs to be analyzed to produce the expected reports. To accomplish this task, a cloud-based analytical solution is ideal in order to generate faster reports in comparison to the traditional way. Given the current state of the world in which every day IoT devices are developed to provide healthcare solutions, it is essential to consider the mechanisms used to collect and analyze the data to provide thorough reports. Integrating AI in IoT Analytics on the Cloud for Healthcare Applications applies artificial intelligence (AI) in edge analytics for healthcare applications, analyzes the impact of tools and techniques in edge analytics for healthcare, and discusses security solutions for edge analytics in healthcare IoT. Covering topics such as data analytics and next generation healthcare systems, it is ideal for researchers, academicians, technologists, IT specialists, data scientists, healthcare industries, IoT developers, data security analysts, educators, and students.
This book aims to provide a detailed understanding of IoMT-supported applications while engaging premium smart computing methods and improved algorithms in the field of computer science. It contains thirteen chapters discussing various applications under the umbrella of the Internet of Medical Things. These applications geared towards IoMT cloud analysis, machine learning, computer vision and deep learning have enabled the evaluation of the proposed solutions.
This book explores potentially disruptive and transformative healthcare-specific use cases made possible by the latest developments in Internet of Things (IoT) technology and Cyber-Physical Systems (CPS). Healthcare data can be subjected to a range of different investigations in order to extract highly useful and usable intelligence for the automation of traditionally manual tasks. In addition, next-generation healthcare applications can be enhanced by integrating the latest knowledge discovery and dissemination tools. These sophisticated, smart healthcare applications are possible thanks to a growing ecosystem of healthcare sensors and actuators, new ad hoc and application-specific sensor and actuator networks, and advances in data capture, processing, storage, and mining. Such applications also take advantage of state-of-the-art machine and deep learning algorithms, major strides in artificial and ambient intelligence, and rapid improvements in the stability and maturity of mobile, social, and edge computing models.