Download Free International Perspectives On The Contextualization Of Science Education Book in PDF and EPUB Free Download. You can read online International Perspectives On The Contextualization Of Science Education and write the review.

This book explores how science learning can be more relevant and interesting for students and teachers by using a contextualized approach to science education. The contributors explore the contextualization of science education from multiple angles, such as teacher education, curriculum design, assessment and educational policy, and from multiple national perspectives. The aim of this exploration is to provide and inspire new practical approaches to bring science education closer to the lives of students to accelerate progress towards global scientific literacy. The book presents real life examples of how to make science relevant for children and adolescents of diverse ethnic and language backgrounds, socioeconomic status and nationalities, providing tools and guidance for teacher educators and researchers to improve the contextualization and cultural relevance of their practice. The book includes rigorous studies demonstrating that the contextualization of science learning environments is essential for student engagement in learning science and practitioners' reflections on how to apply this knowledge in the classroom and at national scale. This approach makes this book valuable for researchers and professors of science education and international education interested in designing teacher education courses that prepare future teachers to contextualize their teaching and in adding a critical dimension to their research agendas.
This book explores how science learning can be more relevant and interesting for students and teachers by using a contextualized approach to science education. The contributors explore the contextualization of science education from multiple angles, such as teacher education, curriculum design, assessment and educational policy, and from multiple national perspectives. The aim of this exploration is to provide and inspire new practical approaches to bring science education closer to the lives of students to accelerate progress towards global scientific literacy. The book presents real life examples of how to make science relevant for children and adolescents of diverse ethnic and language backgrounds, socioeconomic status and nationalities, providing tools and guidance for teacher educators and researchers to improve the contextualization and cultural relevance of their practice. The book includes rigorous studies demonstrating that the contextualization of science learning environments is essential for student engagement in learning science and practitioners' reflections on how to apply this knowledge in the classroom and at national scale. This approach makes this book valuable for researchers and professors of science education and international education interested in designing teacher education courses that prepare future teachers to contextualize their teaching and in adding a critical dimension to their research agendas.
Science Education: A Global Perspective is ‘global’ both in content and authorship. Its 17 chapters by an assemblage of seasoned and knowledgeable science educators from many parts of the world seek to bring to the fore current developments in science education and their implications. The book thus covers a wide range of topics in science education from various national and international perspectives. These include the nature of science, science and religion, evolution, curriculum and pedagogy, context-based teaching and learning, science and national development, socially-responsible science education, equitable access for women and girls in science and technology education, and the benefits of science education research. It ends on an optimistic note by looking at science education in 50 years’ time with a recommendation, among others, for stakeholders to take the responsibility of preparing children towards a blossoming science education sector in an anticipated future world. This book is suitable for use by discerning researchers, teachers, undergraduate and postgraduate students in science education, and policy makers at all levels of education. Other educationalists and personnel in science and technology vocations will also find it interesting and useful as the reader-motivated approach has guided the presentation of ideas. Science Education: A Global Perspective is a rich compendium of the components of science education in context, practice, and delivery. Dr Bulent Cavas, Professor of Science Education, Dokuz Eylul Univerity, Buca-Izmir, Turkey/President-Elect, International Council of Associations for Science Education (ICASE) This book will be of immense relevance for current and future global strides in training and research in science education. Surinder K. Ghai, Chairman, Sterling Publishers Pvt. Ltd., New Delhi, India This book provides a refreshing insight into the current status and future direction of science education. It will be very useful to researchers, those pursuing undergraduate and post-graduate courses in science education, and all other personnel involved in the policy and practice of science education. Dr. Bennoit Sossou, Director/Country Representative, UNESCO Regional Office in Abuja, Nigeria
Volume III of this landmark synthesis of research offers a comprehensive, state-of-the-art survey highlighting new and emerging research perspectives in science education. Building on the foundations set in Volumes I and II, Volume III provides a globally minded, up-to-the-minute survey of the science education research community and represents the diversity of the field. Each chapter has been updated with new research and new content, and Volume III has been further developed to include new and expanded coverage on astronomy and space education, epistemic practices related to socioscientific issues,design-based research, interdisciplinary and STEM education, inclusive science education, and the global impact of nature of science and scientific inquiry literacy. As with the previous volumes, Volume III is organized around six themes: theory and methods of science education research; science learning; diversity and equity; science teaching; curriculum and assessment; and science teacher education. Each chapter presents an integrative review of the research on the topic it addresses, pulling together the existing research, working to understand historical trends and patterns in that body of scholarship, describing how the issue is conceptualized within the literature, how methods and theories have shaped the outcomes of the research, and where the strengths, weaknesses, and gaps are in the literature. Providing guidance to science education faculty, scholars, and graduate students, and pointing towards future directions of the field, Handbook of Research on Science Education Research, Volume III offers an essential resource to all members of the science education community.
This volume seeks to broaden current ideas about the role of critical thinking (CT) in biology and environmental education considering educational challenges in the post-truth era. The chapters are distributed into three sections, perspectives of a theoretical character (part I), empirical research about CT in the context of biology and health education (part II), and empirical research on CT in the context of environmental and sustainability education (part III). The volume includes studies reporting students’ engagement in the practice of critical thinking, and displays how CT can be integrated in biology and environmental education and why biology and environmental issues are privileged contexts for the development of CT. The chapters examine a range of dimensions of CT, such as skills, dispositions, emotions, agency, open-mindedness, or personal epistemologies. In addition, they explore topics such as climate change, sustainable diets, genetically modified food, vaccination, acceptance of evolution, homeopathy, and gene cloning. Concluding remarks regarding the connections between the chapters and future directions for the integration of critical thinking in biology and environmental education are presented in a final chapter.
This book offers a comprehensive overview of the theoretical background and practice of physics teaching and learning and assists in the integration of highly interesting topics into physics lessons. Researchers in the field, including experienced educators, discuss basic theories, the methods and some contents of physics teaching and learning, highlighting new and traditional perspectives on physics instruction. A major aim is to explain how physics can be taught and learned effectively and in a manner enjoyable for both the teacher and the student. Close attention is paid to aspects such as teacher competences and requirements, lesson structure, and the use of experiments in physics lessons. The roles of mathematical and physical modeling, multiple representations, instructional explanations, and digital media in physics teaching are all examined. Quantitative and qualitative research on science education in schools is discussed, as quality assessment of physics instruction. The book is of great value to researchers involved in the teaching and learning of physics, to those training physics teachers, and to pre-service and practising physics teachers.
This timely book addresses the increasing need for collaboration, innovation and solution-focussed skills by looking at examples of cutting-edge pedagogy that can inform future directions. Integrating STEM in Higher Education shows how applying digital innovations that can be generated through the implementation of deliberately designed STEM education can change the world for the better. References to over 45 higher education institutions from around the world are included, where integrated approaches are already occurring. A wide range of teaching strategies and assessment methods are discussed, promoting a transformative method in which students can generate new knowledge within coursework and simultaneously develop skills and attributes for their future careers, lives and the world’s needs. This book is essential reading for STEM educators, administrators and academic leaders, as well as learning designers in higher education.
Chemical education is essential to everybody because it deals with ideas that play major roles in personal, social, and economic decisions. This book is based on three principles: that all aspects of chemical education should be associated with research; that the development of opportunities for chemical education should be both a continuous process and be linked to research; and that the professional development of all those associated with chemical education should make extensive and diverse use of that research. It is intended for: pre-service and practising chemistry teachers and lecturers; chemistry teacher educators; chemical education researchers; the designers and managers of formal chemical curricula; informal chemical educators; authors of textbooks and curriculum support materials; practising chemists and chemical technologists. It addresses: the relation between chemistry and chemical education; curricula for chemical education; teaching and learning about chemical compounds and chemical change; the development of teachers; the development of chemical education as a field of enquiry. This is mainly done in respect of the full range of formal education contexts (schools, universities, vocational colleges) but also in respect of informal education contexts (books, science centres and museums).
This edited volume focuses on challenges facing science education across three areas: curriculum, teacher education, and pedagogy. Integrating a diverse range of perspectives from both emerging and established scholars in the field, chapters consider the need for measured responses to issues in society that have become pronounced in recent years, including lessons from the Covid-19 pandemic, the environment, and persisting challenges in STEM teaching and learning. In doing so, the editors and their authors chart a potential course for existing and future possibilities and probabilities for science education.