Download Free International Perspectives On Mathematics Curriculum Book in PDF and EPUB Free Download. You can read online International Perspectives On Mathematics Curriculum and write the review.

Curriculum can be defined in a variety of ways. It might be viewed as a body of knowledge, a product, or a process. Curricula can differ as they are conceptualized from various theoretical perspectives to address the needs of teachers, students, and the context of schooling. One reason to study curriculum is “to reveal the expectations, processes and outcomes of students’ school learning experiences that are situated in different cultural and system contexts. … further studies of curriculum practices and changes are much needed to help ensure the success of educational reforms in the different cultural and system contexts” (Kulm & Li, 2009, p. 709). This volume highlights international perspectives on curriculum and aims to broaden the wider mathematics education community’s understandings of mathematics curriculum through viewing a variety of ways that curricula are developed, understood, and implemented in different jurisdictions/countries. Within this volume, we define curriculum broadly as the set of mathematics standards or outcomes, the messages inherent in mathematics curriculum documents and resources, how these standards are understood by a variety of stakeholders, and how they are enacted in classrooms. The focus is on the written, implied, and enacted curriculum in various educational settings throughout the world.
Mathematics teacher education has a critical role to play in preparing teachers to put at center stage goals to support equity in mathematics education and to diversify student interest and participation in mathematics. These goals must also resonate with broader public interest goals to improve educational and social conditions both in the U.S. and abroad. The Mathematics Teacher Education in the Public Interest book aims to support mathematics teacher educators to prepare teachers with new knowledge and skills to support all students to learn mathematics and to become informed, engaged, and critical citizens within their community, nation, and world. While internationally there is considerable interest among mathematics educators in issues of equity and social justice, the literature on mathematics teacher education for equity and social justice thus far has been very limited.The book provides theoretical discussions on the need for equity and social justice emphases in mathematics teacher education, as well as practical examples from mathematics teacher educators, documenting their own professional efforts to center practices on equity and social justice. Section emphases include critical perspectives on mathematics teacher education, the use of equity and social justice-themed activities in mathematics teacher preparation courses, and issues of identity and community and cultural contexts in mathematics teacher education. In addition syntheses of major ideas of the book are offered by experienced researchers.
"Mathematics teacher education includes the mathematics content teachers need to understand, the ways that pedagogical approaches are developed, the messages about the nature of mathematics teaching and learning, and the interface between tertiary preparation and school contexts. Scholars from Sweden, France, Malawi, Singapore, New Zealand, Brazil, the USA, and Canada provide insights for the mathematics education community's understanding of how teacher educators in different countries structure, develop, and implement their respective mathematics teacher education programs. Several themes emerged across the chapters including: varied approaches to developing culturally responsive pedagogies and/or Indigenous perspectives to ensure equity and diversity for all students; issues and challenges in fostering partnerships and collaborations among various stakeholders, with partnerships involving connections with mathematics classroom teachers, school districts, and/or mathematicians or mathematics departments; strategies for developing mathematics knowledge for teaching, providing insights into messages about what it means to learn mathematics in terms of content and pedagogy; and preparing teachers who have flexibility and resourcefulness. This book will be of interest to those responsible for higher education, including teacher educators, researchers in mathematics teacher education, instructors of graduate courses preparing future teacher educators, as well as policy makers"--
Mathematics is traditionally seen as the most neutral of disciplines, the furthest removed from the arguments and controversy of politics and social life. However, critical mathematics challenges these assumptions and actively attacks the idea that mathematics is pure, objective, and value?neutral. It argues that history, society, and politics have shaped mathematics—not only through its applications and uses but also through molding its concepts, methods, and even mathematical truth and proof, the very means of establishing truth. Critical mathematics education also attacks the neutrality of the teaching and learning of mathematics, showing how these are value?laden activities indissolubly linked to social and political life. Instead, it argues that the values of openness, dialogicality, criticality towards received opinion, empowerment of the learner, and social/political engagement and citizenship are necessary dimensions of the teaching and learning of mathematics, if it is to contribute towards democracy and social justice. This book draws together critical theoretic contributions on mathematics and mathematics education from leading researchers in the field. Recurring themes include: The natures of mathematics and critical mathematics education, issues of epistemology and ethics; Ideology, the hegemony of mathematics, ethnomathematics, and real?life education; Capitalism, globalization, politics, social class, habitus, citizenship and equity. The book demonstrates the links between these themes and the discipline of mathematics, and its critical teaching and learning. The outcome is a groundbreaking collection unified by a shared concern with critical perspectives of mathematics and education, and of the ways they impact on practice.
MasterClass in Mathematics Education provides accessible links between theory and practice and encourages readers to reflect on their own understanding of their teaching context. Each chapter, written by an internationally respected authority, explores the key concepts within the selected area of the field, drawing directly on published research to encourage readers to reflect on the content, ideas and ongoing debates. Using international case studies, each chapter will encourage readers to think about ways that the teaching and learning of mathematics reflect different cultural traditions and expectations and enable them to evaluate effective strategies for their own contexts.
A volume in Research in Mathematics Education Series Editor Barbara J. Dougherty, Iowa State University Marketing description: Issues of language in mathematics learning and teaching are important for both practical and theoretical reasons. Addressing issues of language is crucial for improving mathematics learning and teaching for students who are bilingual, multilingual, or learning English. These issues are also relevant to theory: studies that make language visible provide a complex perspective of the role of language in reasoning and learning mathematics. What is the relevant knowledge base to consider when designing research studies that address issues of language in the learning and teaching of mathematics? What scholarly literature is relevant and can contribute to research? In order to address issues of language in mathematics education, researchers need to use theoretical perspectives that integrate current views of mathematics learning and teaching with current views on language, discourse, bilingualism, and second language acquisition. This volume contributes to the development of such integrated approaches to research on language issues in mathematics education by describing theoretical perspectives for framing the study of language issues and methodological issues to consider when designing research studies. The volume provides interdisciplinary reviews of the research literature from four very different perspectives: mathematics education (Moschkovich), Cultural-Historical-Activity Theory (Gutierrez, Sengupta-Irving, & Dieckmann), systemic functional linguistics (Schleppegrell), and assessment (Solano-Flores). This volume offers graduate students and researchers new to the study of language in mathematics education an introduction to resources for conceptualizing, framing, and designing research studies. For those already involved in examining language issues, the volume provides useful and critical reviews of the literature as well as recommendations for moving forward in designing research. Lastly, the volume provides a basis for dialogue across multiple research communities engaged in collaborative work to address these pressing issues.
Eminent scholars from around the globe gathered to discuss how educational systems would change if the prevailing principles of constructivism were applied to three major aspects of those systems -- knowledge and learning, communication, and environment. This volume provides documentation of the proceedings of this important meeting - - the Early Childhood Action Group of the Sixth International Congress on Mathematics Education. This international assembly, representing such diverse disciplines as mathematics and math education, epistemology, philosophy, cognitive science, psycholinguistics, and science education, is the first to examine early childhood mathematics education from constructivist and international perspectives in addition to formulating recommendations for future work in the field.
The word "critical" in the title of this collection has three meanings, all of which are relevant. One meaning, as applied to a situation or problem, is "at a point of crisis". A second meaning is "expressing adverse or disapproving comments or judgments". A third is related to the verb "to critique", meaning "to analyze the merits and faults of". The authors contributing to this book pose challenging questions, from multiple perspectives, about the roles of mathematics in society and the implications for education. Traditional reasons for teaching mathematics include: preparing a new generation of mathematics researchers and a cadre of technically competent users of mathematics; training students to think logically; and because mathematics is as much part of cultural heritage as literature or music. These reasons remain valid, though open to critique, but a deeper analysis is required that recognizes the roles of mathematics in framing many aspects of contemporary society, that will connect mathematics education to the lived experiences of students, their communities, and society in general, and that acknowledges the global ethical responsibilities of mathematicians and mathematics educators. The book is organized in four sections (1) Mathematics education: For what and why? (2) Globalization and cultural diversity, (3) Mathematics, education, and society and (4) Social justice in, and through, mathematics education The chapters address fundamental issues such as the relevance of school mathematics in people's lives; creating a sense of agency for the field of mathematics education, and redefining the relationship between mathematics as discipline, mathematics as school subject and mathematics as part of people's lives.
This volume--the first to bring together research on sociocultural aspects of mathematics education--presents contemporary and international perspectives on social justice and equity issues that impact mathematics education. In particular, it highlights the importance of three interacting and powerful factors--gender, social, and cultural dimensions. Sociocultural Research on Mathematics Education: An International Perspective is distinguished in several ways: * It is research based. Chapters report on significant research projects; present a comprehensive and critical summary of the research findings; and offer a critical discussion of research methods and theoretical perspectives undertaken in the area. * It is future oriented, presenting recommendations for practice and policy and identifying areas for further research. * It deals with all aspects of formal and informal mathematics education and applications and all levels of formal schooling. As the context of mathematics education rapidly changes-- with an increased demand for mathematically literate citizenship; an increased awareness of issues of equity, inclusivity, and accountability; and increased efforts for globalization of curriculum development and research-- questions are being raised more than ever before about the problems of teaching and learning mathematics from a non-cognitive science perspective. This book contributes significantly to addressing such issues and answering such questions. It is especially relevant for researchers, graduate students, and policymakers in the field of mathematics education.
This book brings together a collection of research-based papers on current issues in early childhood mathematics education that were presented in the Topic Study Group 1 (TSG 1) at the 13th International Congress on Mathematical Education (ICME-13), held at the University of Hamburg in 2016. It will help readers understand a range of key issues that early childhood mathematics educators encounter today. Research on early childhood mathematics education has grown in recent years, due in part to the well-documented, positive relation between children’s early mathematical knowledge and their later mathematics learning, and to the considerable emphasis many countries are now placing on preschool education. The book addresses a number of central questions, including: What is mathematical structural development and how can we promote it in early childhood? How can multimodality and embodiment contribute to early mathematics learning and to acquiring a better understanding of young children’s mathematical development? How can children’s informal mathematics-related experiences affect instruction and children’s learning in different mathematics content areas? What is the role of tools, including technology and picture books, in supporting early mathematics learning? What are the challenges in early childhood mathematics education for teachers’ education and professional development?