Download Free International Journal Of Self Propagating High Temperature Synthesis Book in PDF and EPUB Free Download. You can read online International Journal Of Self Propagating High Temperature Synthesis and write the review.

The Concise Encyclopedia of Self-Propagating High-Temperature Synthesis: History, Theory, Technology, and Products helps students and scientists understand the fundamental concepts behind self-propagating high-temperature synthesis (SHS). SHS-based technologies provide valuable alterations to traditional methods of material fabrication, such as powder metallurgy, conventional and force sintering, casting, extrusion, high isostatic pressure sintering, and others. The book captures the whole spectrum of the chemistry, physics, reactions, materials, and processes of self-propagating high-temperature synthesis. This book is an indispensable resource not only to scientists working in the field of SHS, but also to researchers in multidisciplinary fields such as chemical engineering, metallurgy, material science, combustion, explosion, and the chemistry of solids. - Written by high-level experts in the field from 20 different countries, along with editors who are founders of the field - Covers 169 topics in the field of SHS - Features new phenomena, such as acoustics and high-energy reactions in combustion synthesis - Provides an overview of many aspects of the constructive application of the combustion phenomenon, for example, in the fabrication of advanced materials
Self-Propagating High-Temperature Synthesis of Materials is a collection of papers that reflects modern trends in self-propagating, high-temperature synthesis (SHS), a process for synthesis of modern materials carried out in the mode of autowave solid-flame combustion. To date, SHS-produced materials have found their application in different branches of modern science and technology, mechanical engineering, ferrous and nonferrous metallurgy, aerospace engineering, chemical industry, electrical engineering, and electronics. This book is useful not only for the SHS community, but also for researchers and engineers who are active in the following related fields of knowledge; theory and practice of combustion, materials science and technology, pure and applied chemistry, and metallurgy.
This book summarizes the state of the art in combustion synthesis of advanced materials. It is a first attempt to summarize and critically review in one monograph the mechanisms of combustion and product structure formation for a variety of systems, including nanosystems. The authors discuss a wide range of topics including phenomenology, theory, and modern in-situ experimental approaches to investigate the heterogeneous self-sustained reactions, as well as properties of the product synthesized, and methods for large-scale materials production.
This book provides an introduction to understanding combustion, the burning of a substance that produces heat and often light, in microgravity environments-i.e., environments with very low gravity such as outer space. Readers are presented with a compilation of worldwide findings from fifteen years of research and experimental tests in various low-gravity environments, including drop towers, aircraft, and space.Microgravity Combustion is unique in that no other book reviews low- gravity combustion research in such a comprehensive manner. It provides an excellent introduction for those researching in the fields of combustion, aerospace, and fluid and thermal sciences.* An introduction to the progress made in understanding combustion in a microgravity environment* Experimental, theoretical and computational findings of current combustion research* Tutorial concepts, such as scaling analysis* Worldwide microgravity research findings
Nano-oxide materials lend themselves to applications in a wide variety of emerging technological fields such as microelectronics, catalysts, ceramics, coatings, and energy storage. However, developing new routes for making nano-based materials is a challenging area for solid-state materials chemists. This book does just that by describing a novel method for preparing them. The authors have developed a novel low-temperature, self-propagating synthetic route to nano-oxides by the solution combustion and combustible precursor processes. This method provides the desired composition, structure, and properties for many types of technologically useful nanocrystalline oxide materials like alumina, ceria, iron oxides, titania, yttria, and zirconia, among others.The book is particularly instructive in bringing readers one step closer to the exploration of nanomaterials. Students of nanoscience can acquaint themselves with the actual production and evaluation of nanopowders by this route, while academic researchers and industrial scientists will find answers to a host of questions on nano-oxides. The book also provides an impetus for scientists in industrial research to evaluate and explore new ways to scale up the production of nanomaterials, offering helpful suggestions for further research.
Mechanochemistry as a branch of solid state chemistry enquires into processes which proceed in solids due to the application of mechanical energy. This provides a thorough, up to date overview of mechanochemistry of solids and minerals. Applications of mechanochemistry in nanoscience with special impact on nanogeoscience are described. Selected advanced identification methods, most frequently applied in nanoscience, are described as well as the advantage of mechanochemical approach in minerals engineering. Examples of industrial applications are given. Mechanochemical technology is being applied in many industrial fields: powder metallurgy (synthesis of nanometals, alloys and nanocompounds), building industry (activation of cements), chemical industry (solid waste treatment, catalyst synthesis, coal ashes utilization), minerals engineering (ore enrichment, enhancement of processes of extractive metallurgy), agriculture industry (solubility increase of fertilizers), and pharmaceutical industry (improvement of solubility and bioavailability of drugs). This reference serves as an introduction to newcomers to mechanochemistry, and encourages more experienced researchers to broaden their knowledge and discover novel applications in the field.
A comprehensive overview of recent developments in the field of non-oxide ceramics with special emphasis placed on the combustion synthesis of group I-VI nitrides and oxynitrides. To ensure the widest possible perspective, the authors are experts in academia, industry, or government research, and each chapter discusses different synthetic methods and process parameters, as well as important material properties and applications. The result is invaluable reading for researchers and practitioners in the industry as well as those looking for an introduction to the field. It is equally of great interest to chemists and materials scientists as well as engineers working in the area of inorganic and solid-state chemistry, structural and functional materials, catalysis, metallurgy, and electrochemistry.
A survey of current research on a wide range of carbide, nitride and boride materials, covering the general issues relevant to the development and characterisation of a variety of advanced materials. Topics include structure and electronic properties, modeling, processing, high-temperature chemistry, oxidation and corrosion, mechanical behaviour, manufacturing and applications. The volume complements more specialised books on specific materials as well as more general texts on ceramics or hard materials, presenting a survey of materials research as a key to technological development. After decades of research, the materials are being used in electronics, wear resistant, refractory and other applications, but numerous new applications are possible. Roughly equal numbers of papers cover theoretical and experimental research in the general field of materials science of refractory materials. Audience: Researchers and graduate students in materials science and engineering.
Thermites, which are generally considered to be reactive mixtures of powdered metals and metal oxides, are an important subset of energetic materials. The underlying thermodynamic properties of a given mixture dictate whether it may undergo a self-sustaining reaction, liberating heat in the process. Thermodynamic information in the existing scientific literature regarding thermitic combinations is scattered and incomplete. Currently, a comprehensive overview of this nature would be of great use to those working in the areas of pyrotechnics, pyrometallurgy, high-temperature chemistry, and materials science. Thermitic Thermodynamics solves this problem by describing the results of calculations on over 800 combinations of metal, metalloid, and metal oxide reactants. Other features include: A first-of-its-kind adiabatic survey of binary thermitic reactions Provides an overview of key trends in exothermic metal-metal oxide reactivity Describes the role of non-oxide product formation in thermitic systems Explains how to interpret the results of thermochemical calculations effectively An invaluable resource, this book provides an accessible introduction for students and is also an enduring guide for professionals.
Borate-based phosphors have attracted much attention, due to their high optical stability, low-cost synthesis via conventional and non-conventional methods and resulting technology to be environmentally friendly. This book discusses the structural and chemical parameters of borates as a phosphor including suitable synthesis methods and proper characterization of materials. Further, it includes applications of borate materials such as photoluminescence, UV application, UVU application, photo therapy application and radiological applications. Features: Provides information on borate phosphors and their structure. Aids selection of proper structural and functional borates used in applications based on phosphor technology. Discloses the modification in properties of borate functional group upon mixing or substitution with other metallic functional groups. Discusses biological applications such as photo-thermal heating-based therapy, temperature sensors, imaging, and diagnosis. Includes current trends and innovations, limitations and challenges, prospects, and scope in each chapter. This book is aimed at researchers and graduate students in inorganic materials, luminescent/optical materials, materials science/engineering, and physics.