Download Free International Journal Of Decision Support System Technology Book in PDF and EPUB Free Download. You can read online International Journal Of Decision Support System Technology and write the review.

Intelligent Decision Technologies (IDT) seeks an interchange of research on intelligent systems and intelligent technologies which enhance or improve decision making in industry, government and academia. The focus is interdisciplinary in nature, and includes research on all aspects of intelligent decision technologies, from fundamental development to the applied system. This volume represents leading research from the Third KES International Symposium on Intelligent Decision Technologies (KES IDT’11), hosted and organized by the University of Piraeus, Greece, in conjunction with KES International. The symposium was concerned with theory, design, development, implementation, testing and evaluation of intelligent decision systems. Topics include decision making theory, intelligent agents, fuzzy logic, multi-agent systems, Bayesian networks, optimization, artificial neural networks, genetic algorithms, expert systems, decision support systems, geographic information systems, case-based reasoning, time series, knowledge management systems, rough sets, spatial decision analysis, and multi-criteria decision analysis. These technologies have the potential to revolutionize decision making in many areas of management, healthcare, international business, finance, accounting, marketing, military applications, ecommerce, network management, crisis response, building design, information retrieval, and disaster recovery for a better future. The symposium was concerned with theory, design, development, implementation, testing and evaluation of intelligent decision systems. Topics include decision making theory, intelligent agents, fuzzy logic, multi-agent systems, Bayesian networks, optimization, artificial neural networks, genetic algorithms, expert systems, decision support systems, geographic information systems, case-based reasoning, time series, knowledge management systems, rough sets, spatial decision analysis, and multi-criteria decision analysis. These technologies have the potential to revolutionize decision making in many areas of management, healthcare, international business, finance, accounting, marketing, military applications, ecommerce, network management, crisis response, building design, information retrieval, and disaster recovery for a better future.
Internet of things (IoT) is an emerging research field that is rapidly becoming an important part of our everyday lives including home automation, smart buildings, smart things, and more. This is due to cheap, efficient, and wirelessly-enabled circuit boards that are enabling the functions of remote sensing/actuating, decentralization, autonomy, and other essential functions. Moreover, with the advancements in embedded artificial intelligence, these devices are becoming more self-aware and autonomous, hence making decisions themselves. Current research is devoted to the understanding of how decision support systems are integrated into industrial IoT. Decision Support Systems and Industrial IoT in Smart Grid, Factories, and Cities presents the internet of things and its place during the technological revolution, which is taking place now to bring us a better, sustainable, automated, and safer world. This book also covers the challenges being faced such as relations and implications of IoT with existing communication and networking technologies; applications like practical use-case scenarios from the real world including smart cities, buildings, and grids; and topics such as cyber security, user privacy, data ownership, and information handling related to IoT networks. Additionally, this book focuses on the future applications, trends, and potential benefits of this new discipline. This book is essential for electrical engineers, computer engineers, researchers in IoT, security, and smart cities, along with practitioners, researchers, academicians, and students interested in all aspects of industrial IoT and its applications.
Decision support systems have experienced a marked increase in attention and importance over the past 25 years. The aim of this book is to survey the decision support system (DSS) field – covering both developed territory and emergent frontiers. It will give the reader a clear understanding of fundamental DSS concepts, methods, technologies, trends, and issues. It will serve as a basic reference work for DSS research, practice, and instruction. To achieve these goals, the book has been designed according to a ten-part structure, divided in two volumes with chapters authored by well-known, well-versed scholars and practitioners from the DSS community.
As effective organizational decision making is a major factor in a company's success, a comprehensive account of current available research on the core concepts of the decision support agenda is in high demand by academicians and professionals. Through 110 authoritative contributions by over 160 of the world's leading experts the Encyclopedia of Decision Making and Decision Support Technologies presents a critical mass of research on the most up-to-date research on human and computer support of managerial decision making, including discussion on support of operational, tactical, and strategic decisions, human vs. computer system support structure, individual and group decision making, and multi-criteria decision making.
Annotation The book presents state-of-the-art knowledge about decision-making support systems (DMSS). Its main goals are to provide a compendium of quality chapters on decision-making support systems that help diffuse scarce knowledge about effective methods and strategies for successfully designing, developing, implementing, and evaluating decision-making support systems, and to create an awareness among readers about the relevance of decision-making support systems in the current complex and dynamic management environment.
As national and international concern over sustainable resources becomes more prevalent, the need for decision support systems (DSS) increases. The applicable uses of a successful system can assist in the sustainability of resources, as well as the efficiency and management of the agri-environment industry. Decision Support Systems in Agriculture, Food and the Environment: Trends, Applications and Advances presents the development of DSS for managing agricultural and environmental systems, focusing on the exposition of innovative methodologies, from web-mobile systems to artificial intelligence and knowledge-based DSS, as well as their applications in every aspect from harvest planning to international food production and land management. This book provides an in depth look into the growing importance of DSS in agriculture.
This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.
Praise for the First Edition "This is the most usable decision support systems text. [i]t is far better than any other text in the field" —Computing Reviews Computer-based systems known as decision support systems (DSS) play a vital role in helping professionals across various fields of practice understand what information is needed, when it is needed, and in what form in order to make smart and valuable business decisions. Providing a unique combination of theory, applications, and technology, Decision Support Systems for Business Intelligence, Second Edition supplies readers with the hands-on approach that is needed to understand the implications of theory to DSS design as well as the skills needed to construct a DSS. This new edition reflects numerous advances in the field as well as the latest related technological developments. By addressing all topics on three levels—general theory, implications for DSS design, and code development—the author presents an integrated analysis of what every DSS designer needs to know. This Second Edition features: Expanded coverage of data mining with new examples Newly added discussion of business intelligence and transnational corporations Discussion of the increased capabilities of databases and the significant growth of user interfaces and models Emphasis on analytics to encourage DSS builders to utilize sufficient modeling support in their systems A thoroughly updated section on data warehousing including architecture, data adjustment, and data scrubbing Explanations and implications of DSS differences across cultures and the challenges associated with transnational systems Each chapter discusses various aspects of DSS that exist in real-world applications, and one main example of a DSS to facilitate car purchases is used throughout the entire book. Screenshots from JavaScript® and Adobe® ColdFusion are presented to demonstrate the use of popular software packages that carry out the discussed techniques, and a related Web site houses all of the book's figures along with demo versions of decision support packages, additional examples, and links to developments in the field. Decision Support Systems for Business Intelligence, Second Edition is an excellent book for courses on information systems, decision support systems, and data mining at the advanced undergraduate and graduate levels. It also serves as a practical reference for professionals working in the fields of business, statistics, engineering, and computer technology.