Download Free International Conference The Application Of High Magnetic Fields In Semiconductor Physics Book in PDF and EPUB Free Download. You can read online International Conference The Application Of High Magnetic Fields In Semiconductor Physics and write the review.

High magnetic fields have been an important tool in semiconductor physics for a long time. The area has been growing very rapidly since quantum effects in silicon field-effect transistors have become of practical interest. Since the discovery of the quantum Hall effect by Klaus von Klitzing in 1980, this subject has grown exponentially. The book contains 42 invited papers and 37 contributed papers which were presented at the 7th of the traditional Würzburg conferences. For the area of high magnetic fields applied in semiconductor physics recent results are discussed, and the state-of-the-art is reviewed. More than 50% of the papers concern two-dimensional electronic systems. Other subjects of current interest are magneto-optics and magneto transport in three-dimensional semiconductors. Special attention has been paid to the rapidly growing field of semimagnetic semiconductors.
This comprehensive volume covers the latest research on high magnetic fields in semiconductor physics presented at the 16th International Conference (SemiMag 16), held in Tallahassee, Florida, August 2-8, 2004.The book features papers from more than 130 participants including the work of the foremost experts in the fields.Much of the most cutting-edge research is covered by the contributions as well as a special focused session on the recently discovered microwave-induced zero resistance effect.
This book summarizes most of the fundamental physical phenomena which semiconductors and their modulated structures exhibit in high magnetic fields. Readers can learn not only the basic theoretical background but also the present state of the art from the most advanced data in this rapidly growing research area.
High magnetic fields have, for a long time, been an important tool in the investigation of the electronic structure of semiconductors. In recent yearsstudies of heterostructures and superlattices have predominated, and this emphasis is reflected in these proceedings. The contributions concentrate on experiments using transport and optical methods, but recent theoretical developments are also covered. Special attention is paid to the quantum Hall effect, including the problem of edge currents, the influence of contacts, and Wigner condensation in the fractional quantum Hall effect regime. The 27 invited contributions by renowned expertsprovide an excellent survey of the field that is complemented by numerous contributed papers.
This volume contains contributions presented at the International Conference "The Application of High Magnetic Fields in Semiconductor Physics", which was held at the University of Wiirzburg from August 22 to 26, 1988. In the tradition of previous Wiirzburg meetings on the subject - the first conference was held in 1972 - only invited papers were presented orally. All 42 lecturers were asked to review their subject to some extent so that this book gives a good overview of the present state of the respective topic. A look at the contents shows that the subjects which have been treated at previous conferences have not lost their relevance. On the contrary, the application of high magnetic fields to semiconductors has grown substantially during the recent past. For the elucidation of the electronic band structure of semicon ductors high magnetic fields are still an indispensable tool. The investigation of two-dimensional electronic systems especially is frequently connected with the use of high magnetic fields. The reason for this is that a high B-field adds angular momentum quantization to the boundary quantization present in het erostructures and superlattices. A glance at the contributions shows that the majority deal with 2D properties. Special emphasis was on the integral and fractional quantum Hall effect. Very recent results related to the observation of a fraction with an even denbminator were presented. It became obvious that the polarization of the different fractional Landau levels is more complicated than originally anticipated.
This volume contains contributions presented at the 12th International Conference on High Magnetic Fields in Semiconductor Physics. In order to give an overview, 37 lecturers not only reviewed the latest results in their field, but also gave a general introduction. The rapid development of semiconductor physics and technology during the last few years has resulted in an extensive application of high magnetic fields in both fundamental and applied research; more than 160 contributed papers were presented as posters.Sixteen years after its discovery, the quantum Hall effect (QHE) is still a subject of high activity. Many new results on the fractional QHE were presented; in addition to 6 invited papers, there were 43 contributions. Another field of high activity is magneto-optics, and 49 posters were presented. Magnetotransport also turned out to be of high interest, and magnetic semiconductors played a prominent role at the conference, too.Without doubt, the availability of superconducting magnets in most laboratories contributed to the growth of semiconductor physics in high magnetic fields. Because not all experiments can be performed in fields up to 10 or 15 teslas, high magnetic field laboratories offering larger fields are indispensable. There were reports from four laboratories on present work going on at these installations.
This volume represents the Proceedings of the Oji International Seminar on the Application of High Magnetic Fields in the Physics of Semiconductors and Magnetic Materials, which was held at the Hakone Kanko Hotel, Hakone, Japan, from 10 to 13 September 1980. The Seminar was organized as a related meeting to the 15th International Conference on the Physics of Semiconductors which was held in Kyoto between 1 and 5 September 1980. From 12 countries, 77 de legates participated in the Seminar. This Seminar was originally planned to be a formal series of International Conferences on the Application of High Magnetic Fields in the Physics of Semiconductors, which was first started by Professor G. Landwehr in 1972 in WUrzburg as a satellite conference to the 11th Semiconductor Conference in Warsaw. The Conference in WUrzburg was con ducted in an informal atmosphere which was followed by three conferences, in WUrzburg in 1974 and 1976, and in Oxford in 1978. At the current Seminar the physics of magnetic materials was added to the scope of the Seminar, because high-field magnetism is also an important research area in the physics of high magnetic fields and is also one of the most active fields in physics in Japan. In the last decade, considerable effort has been devoted to develop the techniques for generating the high magnetic fields in many high-field labora tories in the world.
"Megagauss VIII was held in connection with the conference "Physical Phenomena at High Magnetic Fields - III" (PPHMF-III) in order to encourage and facilitate cross-links between the two scientific communities"--p. xiii.
This three-volume book provides a comprehensive review of experiments in very strong magnetic fields that can only be generated with very special magnets. The first volume is entirely devoted to the technology of laboratory magnets: permanent, superconducting, high-power water-cooled and hybrid; pulsed magnets, both nondestructive and destructive (megagauss fields). Volumes 2 and 3 contain reviews of the different areas of research where strong magnetic fields are an essential research tool. These volumes deal primarily with solid-state physics; other research areas covered are biological systems, chemistry, atomic and molecular physics, nuclear resonance, plasma physics and astrophysics (including QED).