Download Free Interim Storage Of Spent Nuclear Fuel Book in PDF and EPUB Free Download. You can read online Interim Storage Of Spent Nuclear Fuel and write the review.

This publication is a revision by amendment of IAEA Safety Standards Series No. SSG-15 and provides recommendations and guidance on the storage of spent nuclear fuel. It covers all types of storage facility and all types of spent fuel from nuclear power plants and research reactors. It takes into consideration the longer storage periods beyond the original design lifetime of the storage facility that have become necessary owing to delays in the development of disposal facilities and the reduction in reprocessing activities. It also considers developments associated with nuclear fuel, such as higher enrichment, mixed oxide fuels and higher burnup. Guidance is provided on all stages in the lifetime of a spent fuel storage facility, from planning through siting and design to operation and decommissioning. The revision was undertaken by amending, adding and/or deleting specific paragraphs addressing recommendations and findings from studying the accident at the Fukushima Daiichi nuclear power plant in Japan.
This new report from the National Research Council's Nuclear and Radiation Studies Board (NRSB) and the Transportation Research Board reviews the risks and technical and societal concerns for the transport of spent nuclear fuel and high-level radioactive waste in the United States. Shipments are expected to increase as the U.S. Department of Energy opens a repository for spent fuel and high-level waste at Yucca Mountain, and the commercial nuclear industry considers constructing a facility in Utah for temporary storage of spent fuel from some of its nuclear waste plants. The report concludes that there are no fundamental technical barriers to the safe transport of spent nuclear fuel and high-level radioactive and the radiological risks of transport are well understood and generally low. However, there are a number of challenges that must be addressed before large-quantity shipping programs can be implemented successfully. Among these are managing "social" risks. The report does not provide an examination of the security of shipments against malevolent acts but recommends that such an examination be carried out.
Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste, Second Edition, critically reviews state-of-the-art technologies and scientific methods relating to the implementation of the most effective approaches to the long-term, safe disposition of nuclear waste, also discussing regulatory developments and social engagement approaches as major themes. Chapters in Part One introduce the topic of geological disposal, providing an overview of near-surface, intermediate depth, and deep borehole disposal, spanning low-, medium- and high-level wastes. Part Two addresses the different types of repository systems – crystalline, clay, and salt, also discussing methods of site surveying and construction. The critical safety issue of engineered barrier systems is the focus of Part Three, with coverage ranging from nuclear waste canisters, to buffer and backfill materials. Lastly, Parts Four and Five focus on safety, security, and acceptability, concentrating on repository performance assessment, then radiation protection, environmental monitoring, and social engagement. Comprehensively revised, updated, and expanded with 25% new material on topics of current importance, this is the standard reference for all nuclear waste management and geological repository professionals and researchers. - Contains 25% more material on topics of current importance in this new, comprehensive edition - Fully updated coverage of both near-surface/intermediate depth, and deep borehole disposal in one convenient volume - Goes beyond the scientific and technical aspects of disposal to include the political, regulatory, and societal issues involved, all from an international perspective
This publication identifies issues and challenges relevant to the development and implementation of options, policies, strategies and programmes for ensuring safe, secure, and effective storage of spent fuel until transport for reprocessing or disposal. The target audience of this publication includes policy and decision makers who need to be aware of the implicit risks and costs associated with decision timing for determining and implementing an end point for spent fuel management (such as reprocessing or disposal) to ensure the responsible and sustainable use of nuclear energy. The publication will assist those within the nuclear industry in communicating the importance of a clear, credible and sustainable spent fuel management strategy and will encourage decision makers to consider different approaches that may be useful in addressing the uncertainties resulting from an unknown storage duration and an undefined end point for spent fuel management.
Describes international approaches for maintaining fuel subcritical, removing residual heat, providing radiation protection and containing radioactive materials for the lifetime of a facility. It is intended to provide details on the safety assessment of interim spent fuel storage facilities that are not an integral part of an operating plant.
Drawing on the authors' extensive experience in the processing and disposal of waste, An Introduction to Nuclear Waste Immobilisation, Second Edition examines the gamut of nuclear waste issues from the natural level of radionuclides in the environment to geological disposal of waste-forms and their long-term behavior. It covers all-important aspects of processing and immobilization, including nuclear decay, regulations, new technologies and methods. Significant focus is given to the analysis of the various matrices used, especially cement and glass, with further discussion of other matrices such as bitumen. The final chapter concentrates on the performance assessment of immobilizing materials and safety of disposal, providing a full range of the resources needed to understand and correctly immobilize nuclear waste.
This publication presents a set of examples of different approaches for estimating potential exposures in different countries based on participants' experience and considering the IAEA Safety Standard on a generic framework for consideration of radiological environmental impact, including potential exposures.