Download Free Interference In Large Wireless Networks Book in PDF and EPUB Free Download. You can read online Interference In Large Wireless Networks and write the review.

Since interference is the main performance-limiting factor in most wireless networks, it is crucial to characterize the interference statistics. The main two determinants of the interference are the network geometry (spatial distribution of concurrently transmitting nodes) and the path loss law (signal attenuation with distance). For certain classes of node distributions, most notably Poisson point processes, and attenuation laws, closed-form results are available, for both the interference itself as well as the signal-to-interference ratios, which determine the network performance. This monograph presents an overview of these results and gives an introduction to the analytical techniques used in their derivation. The node distribution models range from lattices to homogeneous and clustered Poisson models to general motion-invariant ones. The analysis of the more general models requires the use of Palm theory, in particular conditional probability generating functionals, which are briefly introduced in the appendix.
Wireless technologies grow rapidly and benefit almost every aspect of our daily lives. In a typical multiple-user environment, different users may severely interfere with each other. How to reduce the coordination overhead in order to improve the efficiency of the wireless networks becomes a big challenge. Unlike the wired counterpart, a wireless link is easily affected by environment changes and surrounding wireless activities. Determining the instant link conditions (or qualities) is essential for most protocol designs and application developments in wireless communications. In this book, we introduce several techniques which leverage the physical layer information or cross layer design to enhance the wireless network performance.
Unlike wired networks where transmitters have no effect on receivers other than their own, in wireless networks we are limited by interference. The traditional routing methods are not optimal any more when it comes to a wireless medium. The maximum data rate on each link depends not only on the power in that link but also on the transmitted power from adjacent links. That is why the problem of power optimal routing needs to be solved jointly with scheduling. This suggests a cross layer design method as opposed to traditional networking where the algorithm for each layer is designed separately. In Coping with Interference in Wireless Networks we introduce several methods engaging different layers of network to mitigate interference in a wireless network.
Analyse wireless network performance and improve design choices for future architectures and protocols with this rigorous introduction to stochastic geometry.
The wireless medium is a shared resource. If nearby devices transmit at the same time, their signals interfere, resulting in a collision. In traditional networks, collisions cause the loss of the transmitted information. For this reason, wireless networks have been designed with the assumption that interference is intrinsically harmful and must be avoided. This book, a revised version of the author's award-winning Ph.D. dissertation, takes an alternate approach: Instead of viewing interference as an inherently counterproductive phenomenon that should to be avoided, we design practical systems that transform interference into a harmless, and even a beneficial phenomenon. To achieve this goal, we consider how wireless signals interact when they interfere, and use this understanding in our system designs. Specifically, when interference occurs, the signals get mixed on the wireless medium. By understanding the parameters of this mixing, we can invert the mixing and decode the interfered packets; thus, making interference harmless. Furthermore, we can control this mixing process to create strategic interference that allow decodability at a particular receiver of interest, but prevent decodability at unintended receivers and adversaries. Hence, we can transform interference into a beneficial phenomenon that provides security. Building on this approach, we make four main contributions: We present the first WiFi receiver that can successfully reconstruct the transmitted information in the presence of packet collisions. Next, we introduce a WiFi receiver design that can decode in the presence of high-power cross-technology interference from devices like baby monitors, cordless phones, microwave ovens, or even unknown technologies. We then show how we can harness interference to improve security. In particular, we develop the first system that secures an insecure medical implant without any modification to the implant itself. Finally, we present a solution that establishes secure connections between any two WiFi devices, without having users enter passwords or use pre-shared secret keys.
This book introduces the development of self-interference (SI)-cancellation techniques for full-duplex wireless communication systems. The authors rely on estimation theory and signal processing to develop SI-cancellation algorithms by generating an estimate of the received SI and subtracting it from the received signal. The authors also cover two new SI-cancellation methods using the new concept of active signal injection (ASI) for full-duplex MIMO-OFDM systems. The ASI approach adds an appropriate cancelling signal to each transmitted signal such that the combined signals from transmit antennas attenuate the SI at the receive antennas. The authors illustrate that the SI-pre-cancelling signal does not affect the data-bearing signal. This book is for researchers and professionals working in wireless communications and engineers willing to understand the challenges of deploying full-duplex and practical solutions to implement a full-duplex system. Advanced-level students in electrical engineering and computer science studying wireless communications will also find this book useful as a secondary textbook.
Operating Regimes of Large Wireless Networks identifies the fundamental operating regimes and system parameters in wireless networks, clarifies the impacts of main limiting factors, such as interference, power and space, and suggests architectural guidelines for the design of optimal architectures.
Learn about an information-theoretic approach to managing interference in future generation wireless networks. Focusing on cooperative schemes motivated by Coordinated Multi-Point (CoMP) technology, the book develops a robust theoretical framework for interference management that uses recent advancements in backhaul design, and practical pre-coding schemes based on local cooperation, to deliver the increased speed and reliability promised by interference alignment. Gain insight into how simple, zero-forcing pre-coding schemes are optimal in locally connected interference networks, and discover how significant rate gains can be obtained by making cell association decisions and allocating backhaul resources based on centralized (cloud) processing and knowledge of network topology. Providing a link between information-theoretic analyses and interference management schemes that are easy to implement, this is an invaluable resource for researchers, graduate students and practicing engineers in wireless communications.