Download Free Interfacial Nanochemistry Book in PDF and EPUB Free Download. You can read online Interfacial Nanochemistry and write the review.

The history of the liquid-liquid interface on the earth might be as old as that of the liquid. It is plausible that the generation of the primitive cell membrane is responsible for an accidental advent of the oldest liquid interfaces, since various compounds can be concentrated by an adsorption at the interface. The presence of liquid-liquid interface means that real liquids are far from ideal liquids that must be miscible with any kinds of liquids and have no interface. Thus it can be said that the non-ideality of liquids might generate the liquid-liquid interface indeed and that biological systems might be generated from the non-ideal interface. The liquid-liquid interface has been, therefore, studied as a model of biological membrane. From pairing two-phases of gas, liquid and solid, nine different pairs can be obtained, which include three homo-pairs of gas-gas, liquid-liquid and solid-solid pairs. The gas-gas interface, however, is practically no use under the ordinary conditions. Among the interfaces produced by the pairing, the liquid-liquid interface is most slippery and difficult to be studied experimentally in comparison with the gas-liquid and solid-liquid interfaces, as the liquid-liquid interface is flexible, thin and buried between bulk liquid phases. Therefore, in order to study the liquid-liquid interface, the invention of innovative measurement methods has a primary importance.
Colloid and interface science dealt with nanoscale objects for nearly a century before the term nanotechnology was coined. An interdisciplinary field, it bridges the macroscopic world and the small world of atoms and molecules. Colloid and Interface Chemistry for Nanotechnology is a collection of manuscripts reflecting the activities of research te
This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features selected peer-reviewed contributions from participants in the 5th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2017) held in Chernivtsi, Ukraine on August 23-26, 2017. The International Conference was organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, Ivan Franko National University of Lviv (Ukraine), University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from energy storage to biomedical applications. This book's companion volume also addresses nanooptics, nanoplasmonics, and interface studies.
Cubes, triangular prisms, nano-acorn, nano-centipedes, nanoshells, nano-whiskers. . . . Now that we can create nanoparticles in a wide variety of shapes and morphologies, comes the next challenge: finding ways to organize this collection of particles into larger and more complex systems. Nanoparticle Assemblies and Superstructures, edit
Controlling the properties of materials by modifying their composition and by manipulating the arrangement of atoms and molecules is a dream that can be achieved by nanotechnology. As one of the fastest developing and innovative -- as well as well-funded -- fields in science, nanotechnology has already significantly changed the research landscape in chemistry, materials science, and physics, with numerous applications in consumer products, such as sunscreens and water-repellent clothes. It is also thanks to this multidisciplinary field that flat panel displays, highly efficient solar cells, and new biological imaging techniques have become reality. This second, enlarged edition has been fully updated to address the rapid progress made within this field in recent years. Internationally recognized experts provide comprehensive, first-hand information, resulting in an overview of the entire nano-micro world. In so doing, they cover aspects of funding and commercialization, the manufacture and future applications of nanomaterials, the fundamentals of nanostructures leading to macroscale objects as well as the ongoing miniaturization toward the nanoscale domain. Along the way, the authors explain the effects occurring at the nanoscale and the nanotechnological characterization techniques. An additional topic on the role of nanotechnology in energy and mobility covers the challenge of developing materials and devices, such as electrodes and membrane materials for fuel cells and catalysts for sustainable transportation. Also new to this edition are the latest figures for funding, investments, and commercialization prospects, as well as recent research programs and organizations.
Nanochemistry: Chemistry of Nanoparticle Formation and Interactions provides an overview of the chemistry aspects of nanoparticle science, including nanoparticle synthesis, chemical properties, stability, applications and self-assembly behavior. The critical concepts discussed in this book represent the necessary toolbox for enabling the rational design of nanoparticle-based materials for target applications. After an introduction to standard analytical techniques used for nanoparticle characterization, four separate chapters cover inorganic, organic, polymer nanoparticles, and carbon nanostructures to highlight the synthetic protocols, structural intricacies, and chemical properties specific to each of these material classes. Finally, physicochemical phenomena governing self-assembly behavior of nanoparticles are also discussed in detail separately. This book is intended for senior undergraduate, graduate and postgraduate students and research scientists in nanoscience and nanotechnology, material science, chemistry, physics, biomedical sciences and relevant engineering fields that want to develop a deeper understanding of the governing chemical principles on the nanoscale. Provides an up-to-date text reflecting the latest changes in the field, acting as a fully restructured successor text to Nanochemistry, 2nd Edition (Elsevier, 2013) by Klabunde and Sergeev Leads the reader through the fundamental concepts and illustrative examples of inorganic, organic, and polymer nanoparticle formation, discussing, in detail, the aspects of synthetic geometry control, surface chemistry, and nanoparticle stability Provides in-depth coverage of nanoparticle self-assembly behavior, including the self-assembly driving forces and approaches to control this process through nanoparticle design and environmental cues
Written by a bestselling author and expert in nanochemistry, this title is ideal for interdisciplinary courses in chemistry, materials science, or physics.
Controlling the properties of materials by modifying their composition and by manipulating the arrangement of atoms and molecules is a dream that can be achieved by nanotechnology. As one of the fastest developing and innovative -- as well as well-funded -- fields in science, nanotechnology has already significantly changed the research landscape in chemistry, materials science, and physics, with numerous applications in consumer products, such as sunscreens and water-repellent clothes. It is also thanks to this multidisciplinary field that flat panel displays, highly efficient solar cells, and new biological imaging techniques have become reality. This second, enlarged edition has been fully updated to address the rapid progress made within this field in recent years. Internationally recognized experts provide comprehensive, first-hand information, resulting in an overview of the entire nano-micro world. In so doing, they cover aspects of funding and commercialization, the manufacture and future applications of nanomaterials, the fundamentals of nanostructures leading to macroscale objects as well as the ongoing miniaturization toward the nanoscale domain. Along the way, the authors explain the effects occurring at the nanoscale and the nanotechnological characterization techniques. An additional topic on the role of nanotechnology in energy and mobility covers the challenge of developing materials and devices, such as electrodes and membrane materials for fuel cells and catalysts for sustainable transportation. Also new to this edition are the latest figures for funding, investments, and commercialization prospects, as well as recent research programs and organizations.
This volume continues the tradition formed in Nanotechnology in Catalysis 1 and 2. As with those books, this one is based upon an ACS symposium. Some of the most illustrious names in heterogeneous catalysis are among the contributors. The book covers: Design, synthesis, and control of catalysts at nanoscale; understanding of catalytic reaction at nanometer scale; characterization of nanomaterials as catalysts; nanoparticle metal or metal oxides catalysts; nanomaterials as catalyst supports; new catalytic applications of nanomaterials.
Quickly becoming the hottest topic of the new millennium (2.4 billion dollars funding in US alone) Current status and future trends of micro and nanoelectronics research Written by leading experts in the corresponding research areas Excellent tutorial for graduate students and reference for "gurus" Provides a broad overlook and fundamentals of nanoscience and nanotechnology from chemistry to electronic devices