Download Free Interfaces Quantum Wells And Superlattices Book in PDF and EPUB Free Download. You can read online Interfaces Quantum Wells And Superlattices and write the review.

The NATO Advanced Study Institute on "Interfaces, Quantum Wells and Superlattices" was held from August 16th to 29th, 1987, in Banff, Alberta, Canada. This volume contains most of the lectures that were given at the Institute. A few of the lectures had already been presented at an earlier meeting and appear instead in the proceedings of the NATO Advanced Study Institute on "Physics and Applications of Quantum Wells and Super lattices" held in Erice from April 21st to May 1st earlier in the year and published by Plenum Press. The study of semiconductor interfaces, quantum wells and super lattices has come to represent a substantial proportion of all work in condensed matter physics. In a sense the growth of interest in this area, which began to accelerate about 10 years ago and seems to be continuing, has been driven by technological developments. While the older generation of semiconductor devices was based on adjacent semiconductors with different properties (e. g. different doping levels) separated by interfaces, modern semiconductor devices tend to be based more and more on properties of the interfaces themselves. This has led, as an example, to the field of band-structure engineering. Improved understanding of the fundamental physics of these systems has aided technological developments and, in turn, technological developments have made available systems which exhibit novel and fascinating phYSical properties, such as the integer and fractional quantum Hall effects.
This book is concerned with the dynamic field of semiconductor microstructures and interfaces. Several topics in the fundamental properties of interfaces, superlattices and quantum wells are included, as are papers on growth techniques and applications. The papers deal with the interaction of theory, experiments and applications within the field, and the outstanding contributions are from both the academic and industrial worlds.
This book contains the lectures delivered at the NATO Advanced Study Institute on "Physics and Applications of Quantum Wells and Superlattices", held in Erice, Italy, on April 21-May 1, 1987. This course was the fourth one of the International School of Solid-State Device Research, which is under the auspices of the Ettore Majorana Center for Scientific Culture. In the last ten years, we have seen an enormous increase in re search in the field of Semiconductor Heterostructures, as evidenced by the large percentage of papers presented in recent international conferences on semiconductor physics. Undoubtfully, this expansion has been made possible by dramatic advances in materials preparation, mostly by molecular beam epitaxy and organometallic chemical vapor deposition. The emphasis on epitaxial growth that was prevalent at the beginning of the decade (thus, the second course of the School, held in 1983, was devoted to Molecular Beam Epitaxy and Heterostructures) has given way to a strong interest in new physical phenomena and new material structures, and to practical applications that are already emerging from them.
A finely-structured, state-of-the-art review on controlled building of atomic-scale mutilayers, where nanometric structures based on III-V semiconductors have attracted particular attention.
Provides a basic understanding of how semiconductor quantum wells and superlattices can be used for long-wavelength infrared detectors and related systems. It represents a step towards a knowledge of novel structures that could be used for high-performance infrared detectors and imaging rays.
1. Carrier transport in artificially structured two-dimensional semiconductor systems / W. Walukiewicz -- 2. Miniband conduction in semiconductor superlattices / A. Sibille, J.F. Palmier, C. Minot -- 3. Barrier width dependence of optical properties in semiconductor superlattices / J.J. Song, J.F. Zhou and J.M. Jacob -- 4. Radiative processes in GaAs/AlGaAs heterostructures / P.O. Holtz, B. Monemar and J. Merz -- 5. Type-I-type-II transition in GaAs/AlAs superlattices / G.H. Li -- 6. Photoluminescence studies of interface roughness in GaAs/AlAs quantum well structures / D. Gammon, B.V. Shanabrook and D.S. Katzer -- 7. Optical and magneto-optical properties of narrow In[symbol]Ga[symbol]As-GaAs quantum wells / D.C. Reynolds and K.R. Evans -- 8. Growth and studies of antimony based III-V compounds by magnetron sputter epitaxy using metalorganic and solid elemental sources / J.B. Webb and R. Rousina -- 9. Properties of Cd[symbol]Mn[symbol]Te films and Cd[symbol]Mn[symbol]Te-CdTe superlattices grown by pulsed laser evaporation and epitaxy / J.M. Wrobel and J.J. Dubowski -- 10. Zn[symbol]Cd[symbol]Se[symbol]Te[symbol] quatenary II-VI wide bandgap alloys and heterostructures / R.E. Nahory, M.J.S.P. Brasil and M.C. Tamargo -- 11. Intersubband transitions in SiGe/Si quantum structures/ R.P.G. Karunasiri, K.L. Wang and J.S. Park -- 12. High-temperature discrete devices in 6H-SiC: sublimation epitaxial growth, device technology and electrical performance / M.M. Anikin [und weitere]
Superlattice to Nanoelectronics, Second Edition, traces the history of the development of superlattices and quantum wells from their origins in 1969. Topics discussed include the birth of the superlattice; resonant tunneling via man-made quantum well states; optical properties and Raman scattering in man-made quantum systems; dielectric function and doping of a superlattice; and quantum step and activation energy. The book also covers semiconductor atomic superlattice; Si quantum dots fabricated from annealing amorphous silicon; capacitance, dielectric constant, and doping quantum dots; porous silicon; and quantum impedance of electrons. Written by one of the founders of this field Delivers over 20% new material, including new research and new technological applications Provides a basic understanding of the physics involved from first principles, while adding new depth, using basic mathematics and an explanation of the background essentials
Semiconductor devices based on lattice mismatched heterostructures have been the subject of much study. This volume focuses on the physics, technology and applications of strained layer quantum wells and superlattices, featuring chapters on aspects ranging from theoretical modeling of quantum-well lasers to materials characterization and assessment by the most prominent researchers in the field. It is an essential reference for both researchers and students of semiconductor lasers, sensors and communications.
This volume contains important and active results in the fields of Superlattices and Quantum Wells. It includes current prospects regarding scientific discoveries and future device applications. Papers are contributed by leading scientists in the world.