Download Free Interdisciplinary Expansions In Engineering And Design With The Power Of Biomimicry Book in PDF and EPUB Free Download. You can read online Interdisciplinary Expansions In Engineering And Design With The Power Of Biomimicry and write the review.

People have been finding inspiration in nature in solving their problems, from the very beginning of their existence. In the most general sense, biomimicry, defined as "inspire from the nature," has brought together the engineers and designers nowadays. This collaboration creates innovative and creative outcomes that encourage people with their interdisciplinary relationships. Accordingly, the aim of this book is to bring together different works or developments on biomimetics in interdisciplinary relationship between different areas, especially biomimicry, engineering, and design. The twenty-first century has conceived many new and amazing designs. The book in your hands will surely be an important guide to take a quick look at the future possibilities.
As the existence of all life forms on our planet is currently in grave danger from the climate emergency caused by Homo sapiens, the words "sustainability" and "eco-responsibility" have entered the daily-use vocabularies of scientists, engineers, economists, business managers, industrialists, capitalists, and policy makers. Normal activities undertaken for the design of products and systems in industrialisms must be revamped. As the bioworld is a great resource for eco-responsible design activities, an overview of biologically inspired design is presented in this book in simple terms for anyone with even high-school education. Beginning with an introduction to the process of design in industry, the book presents the bioworld as a design resource along with the rationale for biologically inspired design. Problem-driven and solution-driven approaches for biologically inspired design are described next. The last chapter is focused on biologically inspired design for environment.
Biomimicry for Materials, Design and Habitats: Innovations and Applications and is a survey of the recent work of recognized experts in a variety of fields who employ biomimicry and related paradigms to solve key problems of interest within design, science, technology, and society. Topics covered include innovations from biomimicry in materials, product design, architecture, and biological sciences. The book is a useful resource for educators, designers, researchers, engineers, and materials scientists, taking them from the theory behind biomimicry to real world applications. Living systems have evolved innovative solutions to challenges that humans face on a daily basis. Nonlinear multifunctional systems that have a symbiotic relationship with their environment are the domain of nature. Morphological solutions for buildings inspired by nature can be used for skins, surfaces, and structures to facilitate environmental adaptation of buildings to increase occupant comfort and reduce energy demands. Birds can teach us to produce novel structures, 3D printing can be informed by oysters and mussels, and mycelium may show us the way to fabricate new biocomposites in architecture. Therefore, it is in nature that we seek inspiration for the solutions to tomorrow’s challenges. Presents new directions in education and the various applications of biomimicry within industry, including bio-inspired entrepreneurship Discusses the role of biomimicry in education, innovation, and product design Covers applications in systems engineering and design, novel materials with applications in 3D printing, and bio-inspired architecture Includes perspectives on sustainability detailing the role that bio-inspiration or biomimicry plays in sustainability
Engineered Biomimicry covers a broad range of research topics in the emerging discipline of biomimicry. Biologically inspired science and technology, using the principles of math and physics, has led to the development of products as ubiquitous as VelcroTM (modeled after the spiny hooks on plant seeds and fruits). Readers will learn to take ideas and concepts like this from nature, implement them in research, and understand and explain diverse phenomena and their related functions. From bioinspired computing and medical products to biomimetic applications like artificial muscles, MEMS, textiles and vision sensors, Engineered Biomimicry explores a wide range of technologies informed by living natural systems. Engineered Biomimicry helps physicists, engineers and material scientists seek solutions in nature to the most pressing technical problems of our times, while providing a solid understanding of the important role of biophysics. Some physical applications include adhesion superhydrophobicity and self-cleaning, structural coloration, photonic devices, biomaterials and composite materials, sensor systems, robotics and locomotion, and ultra-lightweight structures. Explores biomimicry, a fast-growing, cross-disciplinary field in which researchers study biological activities in nature to make critical advancements in science and engineering Introduces bioinspiration, biomimetics, and bioreplication, and provides biological background and practical applications for each Cutting-edge topics include bio-inspired robotics, microflyers, surface modification and more
The solutions to technical challenges posed by flight and space exploration tend to be multidimensional, multifunctional, and increasingly focused on the interaction of systems and their environment. The growing discipline of biomimicry focuses on what humanity can learn from the natural world. Biomimicry for Aerospace: Technologies and Applications features the latest advances of bioinspired materials–properties relationships for aerospace applications. Readers will get a deep dive into the utility of biomimetics to solve a number of technical challenges in aeronautics and space exploration. Part I: Biomimicry in Aerospace: Education, Design, and Inspiration provides an educational background to biomimicry applied for aerospace applications. Part II: Biomimetic Design: Aerospace and Other Practical Applications discusses applications and practical aspects of biomimetic design for aerospace and terrestrial applications and its cross-disciplinary nature. Part III: Biomimicry and Foundational Aerospace Disciplines covers snake-inspired robots, biomimetic advances in photovoltaics, electric aircraft cooling by bioinspired exergy management, and surrogate model-driven bioinspired optimization algorithms for large-scale and complex problems. Finally, Part IV: Bio-Inspired Materials, Manufacturing, and Structures reviews nature-inspired materials and processes for space exploration, gecko-inspired adhesives, bioinspired automated integrated circuit manufacturing on the Moon and Mars, and smart deployable space structures inspired by nature. Introduces educational aspects of bio-inspired design for novel and practical technologies Presents a series of bio-inspired technologies applicable to the field of aerospace engineering Provides an introduction to nature-inspired design and engineering and its relevance to planning and developing the next generation of robotic and human space missions
Mimicking nature – from science fiction to engineering reality Humans have always looked to nature’s inventions as a source of inspiration. The observation of flying birds and insects leads to innovations in aeronautics. Collision avoidance sensors mimic the whiskers of rodents. Optimization algorithms are based on survival of the fittest, the seed-picking process of pigeons, or the behavior of ant colonies. In recent years these efforts have become more intensive, with researchers seeking rules, concepts, and principles of biology to inspire new possibilities in materials, mechanisms, algorithms, and fabrication processes. A review of the current state of the art, Biomimetics: Nature Based Innovation documents key biological solutions that provide a model for innovations in engineering and science. Leading experts address a wide range of topics, including: Artificial senses and organs Mimicry at the cell–materials interface Multiscale modeling of plant cell wall architecture and tissue mechanics The making of biomimetic composites Electroactive polymer (EAP) actuators as artificial muscles EAP-based refreshable braille displays Biomimetic optics from the angles of biology and plants Biomimicry of flying birds, insects, and marine biology Applications of biomimetics in manufacturing, products, and medicine Robotics, including the development of human-like robots Biologically inspired design as a tool for interdisciplinary education The biomimetic process in artistic creation The final chapter outlines the challenges to biomimetic-related innovation and offers a vision for the future. A follow-up to Biomimetics: Biologically Inspired Technologies (2005), this comprehensive reference methodically surveys the latest advances in this rapidly emerging field. It features an abundance of illustrations, including a 32-page full-color insert, and provides extensive references for engineers and scientists interested in delving deeper into the study of biomimetics.
The book presents an outline of current activities in the field of biomimetics and integrates a variety of applications comprising biophysics, surface sciences, architecture and medicine. Biomimetics as innovation method is characterised by interdisciplinary information transfer from the life sciences to technical application fields aiming at increased performance, functionality and energy efficiency. The contributions of the book relate to the research areas: - Materials and structures in nanotechnology and biomaterials - Biomimetic approaches to develop new forms, construction principles and design methods in architecture - Information and dynamics in automation, neuroinformatics and biomechanics Readers will be informed about the latest research approaches and results in biomimetics with examples ranging from bionic nano-membranes to function-targeted design of tribological surfaces and the translation of natural auditory coding strategies.
Nature has evolved through the ages developing time-tested designs that can effectively solve many modern-day problems. Biomimicry is an emerging interdisciplinary approach in which we learn from nature's time-tested strategies to address complex engineering and technological challenges. This book explores the integration of biomimetic principles into engineering design. Leveraging insights from natural designs, the book endeavours to develop innovative solutions for sustainability, efficiency, and resilience in engineering applications. This book encompasses a comprehensive literature review and success stories across multiple fields related to engineering.
Climate Change Science: Causes, Effects and Solutions for Global Warming presents unbiased, state-of-the-art, scientific knowledge on climate change and engineering solutions for mitigation. The book expands on all major prospective solutions for tackling climate change in a complete manner. It comprehensively explains the variety of climate solutions currently available, including the remaining challenges associated with each. Effective, complementary solutions for engineering to combat climate change are discussed and elaborated on. Some of the more high-risk proposals are qualitatively and quantitatively compared and contrasted with low-risk mitigation actions to facilitate the formulation of feasible, environmentally-friendly solutions. The book provides academics, postgraduate students and other readers in the fields of environmental science, climate change, atmospheric sciences and engineering with the information they need for their roles. Through exploring the fundamental information currently available, exergy utilization, large-scale solutions, and current solutions in place, the book is an invaluable look into how climate change can be addressed from an engineering-perspective using scientific models and calculations. Provides up-to-date, comprehensive research on the causes and effects of climate change – both manmade and natural Explains the scientific data behind climate change from an interdisciplinary perspective Describes the future effects of climate change and the necessity for immediate implementation Presents environmentally-friendly solutions and critically analyzes benefits and drawbacks