Download Free Interactive Markov Chains Book in PDF and EPUB Free Download. You can read online Interactive Markov Chains and write the review.

Markov Chains are widely used as stochastic models to study a broad spectrum of system performance and dependability characteristics. This monograph is devoted to compositional specification and analysis of Markov chains. Based on principles known from process algebra, the author systematically develops an algebra of interactive Markov chains. By presenting a number of distinguishing results, of both theoretical and practical nature, the author substantiates the claim that interactive Markov chains are more than just another formalism: Among other, an algebraic theory of interactive Markov chains is developed, devise algorithms to mechanize compositional aggregation are presented, and state spaces of several million states resulting from the study of an ordinary telefone system are analyzed.
Markov Chains are widely used as stochastic models to study a broad spectrum of system performance and dependability characteristics. This monograph is devoted to compositional specification and analysis of Markov chains. Based on principles known from process algebra, the author systematically develops an algebra of interactive Markov chains. By presenting a number of distinguishing results, of both theoretical and practical nature, the author substantiates the claim that interactive Markov chains are more than just another formalism: Among other, an algebraic theory of interactive Markov chains is developed, devise algorithms to mechanize compositional aggregation are presented, and state spaces of several million states resulting from the study of an ordinary telefone system are analyzed.
A fascinating and instructive guide to Markov chains for experienced users and newcomers alike This unique guide to Markov chains approaches the subject along the four convergent lines of mathematics, implementation, simulation, and experimentation. It introduces readers to the art of stochastic modeling, shows how to design computer implementations, and provides extensive worked examples with case studies. Markov Chains: From Theory to Implementation and Experimentation begins with a general introduction to the history of probability theory in which the author uses quantifiable examples to illustrate how probability theory arrived at the concept of discrete-time and the Markov model from experiments involving independent variables. An introduction to simple stochastic matrices and transition probabilities is followed by a simulation of a two-state Markov chain. The notion of steady state is explored in connection with the long-run distribution behavior of the Markov chain. Predictions based on Markov chains with more than two states are examined, followed by a discussion of the notion of absorbing Markov chains. Also covered in detail are topics relating to the average time spent in a state, various chain configurations, and n-state Markov chain simulations used for verifying experiments involving various diagram configurations. • Fascinating historical notes shed light on the key ideas that led to the development of the Markov model and its variants • Various configurations of Markov Chains and their limitations are explored at length • Numerous examples—from basic to complex—are presented in a comparative manner using a variety of color graphics • All algorithms presented can be analyzed in either Visual Basic, Java Script, or PHP • Designed to be useful to professional statisticians as well as readers without extensive knowledge of probability theory Covering both the theory underlying the Markov model and an array of Markov chain implementations, within a common conceptual framework, Markov Chains: From Theory to Implementation and Experimentation is a stimulating introduction to and a valuable reference for those wishing to deepen their understanding of this extremely valuable statistical tool. Paul A. Gagniuc, PhD, is Associate Professor at Polytechnic University of Bucharest, Romania. He obtained his MS and his PhD in genetics at the University of Bucharest. Dr. Gagniuc’s work has been published in numerous high profile scientific journals, ranging from the Public Library of Science to BioMed Central and Nature journals. He is the recipient of several awards for exceptional scientific results and a highly active figure in the review process for different scientific areas.
Meyn and Tweedie is back! The bible on Markov chains in general state spaces has been brought up to date to reflect developments in the field since 1996 - many of them sparked by publication of the first edition. The pursuit of more efficient simulation algorithms for complex Markovian models, or algorithms for computation of optimal policies for controlled Markov models, has opened new directions for research on Markov chains. As a result, new applications have emerged across a wide range of topics including optimisation, statistics, and economics. New commentary and an epilogue by Sean Meyn summarise recent developments and references have been fully updated. This second edition reflects the same discipline and style that marked out the original and helped it to become a classic: proofs are rigorous and concise, the range of applications is broad and knowledgeable, and key ideas are accessible to practitioners with limited mathematical background.
Critically acclaimed text for computer performance analysis--now in its second edition The Second Edition of this now-classic text provides a current and thorough treatment of queueing systems, queueing networks, continuous and discrete-time Markov chains, and simulation. Thoroughly updated with new content, as well as new problems and worked examples, the text offers readers both the theory and practical guidance needed to conduct performance and reliability evaluations of computer, communication, and manufacturing systems. Starting with basic probability theory, the text sets the foundation for the more complicated topics of queueing networks and Markov chains, using applications and examples to illustrate key points. Designed to engage the reader and build practical performance analysis skills, the text features a wealth of problems that mirror actual industry challenges. New features of the Second Edition include: * Chapter examining simulation methods and applications * Performance analysis applications for wireless, Internet, J2EE, and Kanban systems * Latest material on non-Markovian and fluid stochastic Petri nets, as well as solution techniques for Markov regenerative processes * Updated discussions of new and popular performance analysis tools, including ns-2 and OPNET * New and current real-world examples, including DiffServ routers in the Internet and cellular mobile networks With the rapidly growing complexity of computer and communication systems, the need for this text, which expertly mixes theory and practice, is tremendous. Graduate and advanced undergraduate students in computer science will find the extensive use of examples and problems to be vital in mastering both the basics and the fine points of the field, while industry professionals will find the text essential for developing systems that comply with industry standards and regulations.
Primarily an introduction to the theory of stochastic processes at the undergraduate or beginning graduate level, the primary objective of this book is to initiate students in the art of stochastic modelling. However it is motivated by significant applications and progressively brings the student to the borders of contemporary research. Examples are from a wide range of domains, including operations research and electrical engineering. Researchers and students in these areas as well as in physics, biology and the social sciences will find this book of interest.
This book constitutes the refereed proceedings of the 5th International Symposium on Automated Technology for Verification and Analysis, ATVA 2007. The 29 revised full papers presented together with seven short papers address theoretical methods to achieve correct software or hardware systems, including both functional and non functional aspects; as well as applications of theory in engineering methods and particular domains and handling of practical problems occurring in tools.
A long time ago I started writing a book about Markov chains, Brownian motion, and diffusion. I soon had two hundred pages of manuscript and my publisher was enthusiastic. Some years and several drafts later, I had a thousand pages of manuscript, and my publisher was less enthusiastic. So we made it a trilogy: Markov Chains Brownian Motion and Diffusion Approximating Countable Markov Chains familiarly - MC, B & D, and ACM. I wrote the first two books for beginning graduate students with some knowledge of probability; if you can follow Sections 10.4 to 10.9 of Markov Chains you're in. The first two books are quite independent of one another, and completely independent of the third. This last book is a monograph which explains one way to think about chains with instantaneous states. The results in it are supposed to be new, except where there are specific disclaim ers; it's written in the framework of Markov Chains. Most of the proofs in the trilogy are new, and I tried hard to make them explicit. The old ones were often elegant, but I seldom saw what made them go. With my own, I can sometimes show you why things work. And, as I will VB1 PREFACE argue in a minute, my demonstrations are easier technically. If I wrote them down well enough, you may come to agree.