Download Free Interactive Collision Detection Between Multiple 3d Objects In Large Complex Environments Using Graphics Hardware And Voxelization Book in PDF and EPUB Free Download. You can read online Interactive Collision Detection Between Multiple 3d Objects In Large Complex Environments Using Graphics Hardware And Voxelization and write the review.

This thesis presents an approach which uses parallel computation for fast and interactive collision detection between multiple 3D objects in large environments using graphics hardware.
The heart of any system that simulates the physical interaction between objects is collision detection-the ability to detect when two objects have come into contact. This system is also one of the most difficult aspects of a physical simulation to implement correctly, and invariably it is the main consumer of CPU cycles. Practitioners, new to the f
Written by an expert in the game industry, Christer Ericson's new book is a comprehensive guide to the components of efficient real-time collision detection systems. The book provides the tools and know-how needed to implement industrial-strength collision detection for the highly detailed dynamic environments of applications such as 3D games, virtual reality applications, and physical simulators. Of the many topics covered, a key focus is on spatial and object partitioning through a wide variety of grids, trees, and sorting methods. The author also presents a large collection of intersection and distance tests for both simple and complex geometric shapes. Sections on vector and matrix algebra provide the background for advanced topics such as Voronoi regions, Minkowski sums, and linear and quadratic programming. Of utmost importance to programmers but rarely discussed in this much detail in other books are the chapters covering numerical and geometric robustness, both essential topics for collision detection systems. Also unique are the chapters discussing how graphics hardware can assist in collision detection computations and on advanced optimization for modern computer architectures. All in all, this comprehensive book will become the industry standard for years to come.
Inhaltsangabe:Introduction: Reconstruction of real-world scenes from a set of multiple images is a topic in Computer Vision and 3D Computer Graphics with many interesting applications. There is a relation to Augmented and Mixed Reality (AR/MR), Computer-Supported Collaborative Work (CSCW), Computer-Aided industrial/architectural Design (CAD), modeling of the real-world (e.g. computer games, scenes/effects in movies), entertainment (e.g. 3D TV/Video) and recognition/analyzing of real-world characteristics by computer systems and robots. There exists a powerful algorithm theory for shape reconstruction from arbitrary viewpoints, called shape from photo-consistency. However, it is computationally expensive and hence can not be used with applications in the field of 3D video or CSCW as well as interactive 3D model creation. Attempts have been made to achieve real-time framerates using PC cluster systems. While these provide enough performance they are also expensive and less flexible. Approaches that use GPU hardware-acceleration on single workstations achieve interactive framerates for novel-view synthesis, but do not provide an explicit volumetric representation of the whole scene. The proposed approach shows the efforts in developing a GPU hardware-accelerated framework for obtaining the volumetric photo hull of a dynamic 3D scene as seen from multiple calibrated cameras. High performance is achieved by employing a shape from silhouette technique in advance to obtain a tight initial volume for shape from photo-consistency. Also several speed-up techniques are presented to increase efficiency. Since the entire processing is done on a single PC, the framework can be applied to mobile setups, enabling a wide range of further applications. The approach is explained using programmable vertex and fragment processors and compared to highly optimized CPU implementations. It is shown that the new approach can outperform the latter by more than one magnitude. The thesis is organized as follows: Chapter 1 contains an introduction, giving an overview with classification of related techniques, statement of the main problem, novelty of the proposed approach and its fields of application. Chapter 2 surveys related work in the area of dynamic scene reconstruction by shape from silhouette and shape from photo-consistency. The focus lies on high performance reconstruction and hardware-acceleration. Chapter 3 introduces the theoretical basis for the proposed [...]
For a long time, human beings have dreamed of a virtual world where it is possible to interact with synthetic entities as if they were real. It has been shown that the ability to touch virtual objects increases the sense of presence in virtual environments. This book provides an authoritative overview of state-of-theart haptic rendering algorithms
Starting with novel algorithms for optimally updating bounding volume hierarchies of objects undergoing arbitrary deformations, the author presents a new data structure that allows, for the first time, the computation of the penetration volume. The penetration volume is related to the water displacement of the overlapping region, and thus corresponds to a physically motivated and continuous force. The practicability of the approaches used is shown by realizing new applications in the field of robotics and haptics, including a user study that evaluates the influence of the degrees of freedom in complex haptic interactions. New Geometric Data Structures for Collision Detection and Haptics closes by proposing an open source benchmarking suite that evaluates both the performance and the quality of the collision response in order to guarantee a fair comparison of different collision detection algorithms. Required in the fields of computer graphics, physically-based simulations, computer animations, robotics and haptics, collision detection is a fundamental problem that arises every time we interact with virtual objects. Some of the open challenges associated with collision detection include the handling of deformable objects, the stable computation of physically-plausible contact information, and the extremely high frequencies that are required for haptic rendering. New Geometric Data Structures for Collision Detection and Haptics presents new solutions to all of these challenges, and will prove to be a valuable resource for researchers and practitioners of collision detection in the haptics, robotics and computer graphics and animation domains.
Thoroughly revised, this third edition focuses on modern techniques used to generate synthetic three-dimensional images in a fraction of a second. With the advent of programmable shaders, a wide variety of new algorithms have arisen and evolved over the past few years. This edition discusses current, practical rendering methods used in games and other applications. It also presents a solid theoretical framework and relevant mathematics for the field of interactive computer graphics, all in an approachable style. The authors have made the figures used in the book available for download for fair use.:Download Figures. Reviews Rendering has been a required reference for professional graphics practitioners for nearly a decade. This latest edition is as relevant as ever, covering topics from essential mathematical foundations to advanced techniques used by today’s cutting edge games. -- Gabe Newell, President, Valve, May 2008 Rendering ... has been completely revised and revamped for its updated third edition, which focuses on modern techniques used to generate three-dimensional images in a fraction of the time old processes took. From practical rendering for games to math and details for better interactive applications, it's not to be missed. -- The Bookwatch, November 2008 You'll get brilliantly lucid explanations of concepts like vertex morphing and variance shadow mapping—as well as a new respect for the incredible craftsmanship that goes into today's PC games. -- Logan Decker, PC Gamer Magazine , February 2009
This volume presents the processing of the 15th ICMBE held from 4th to 7th December 2013, Singapore. Biomedical engineering is applied in most aspects of our healthcare ecosystem. From electronic health records to diagnostic tools to therapeutic, rehabilitative and regenerative treatments, the work of biomedical engineers is evident. Biomedical engineers work at the intersection of engineering, life sciences and healthcare. The engineers would use principles from applied science including mechanical, electrical, chemical and computer engineering together with physical sciences including physics, chemistry and mathematics to apply them to biology and medicine. Applying such concepts to the human body is very much the same concepts that go into building and programming a machine. The goal is to better understand, replace or fix a target system to ultimately improve the quality of healthcare. With this understanding, the conference proceedings offer a single platform for individuals and organizations working in the biomedical engineering related field to gather and network with each other in so doing create the catalyst for future development of biomedical engineering in Asia.