Download Free Interaction Of Phospholipid Bilayers And Monolayers With Nominally Soluble Proteins Book in PDF and EPUB Free Download. You can read online Interaction Of Phospholipid Bilayers And Monolayers With Nominally Soluble Proteins and write the review.

This book has been conceives as a brief introduction to biomembranes physical chemistry for undergraduate students of sciences, and it is particularly dedicated to the lipid-protein membrane interactions. A general introduction is presented in Chapters 1 and 2. The following Chapters, 3 and 4, describe the most accepted theories on lipid-membrane protein interactions as well as the new experimental approaches, in particular, these arose from nano sciences as atomic for microscopy and single molecule force spectroscopy. The book emphasizes the relevance of physical parameters as the lateral surface pressure and the lipid curvature as actors for understanding the physicochemical properties of the biomembranes.
Vols. for 1963- include as pt. 2 of the Jan. issue: Medical subject headings.
Interfacial Phenomena examines the fundamental properties of various liquid interfaces. This book discusses the physics of surfaces; electrostatic and electrokinetic phenomena; and adsorption at liquid interfaces. The properties of monolayers; reactions at liquid surfaces; diffusion through interfaces; and disperse systems and adhesion are also deliberated. Other topics include the vapor pressures over curved surfaces; electrical capacity of the double layer; applications of electrophoresis; and thermodynamics of adsorption and desorption. The experimental methods of spreading films at the oil-water interface; penetration into monolayers; experiments on dynamic systems; and spontaneous emulsification are likewise covered in this text. This book is beneficial to chemical engineers and students concerned with interfacial phenomena.
In recent years, the fabrication of nanomaterials and exploration of their properties have attracted the attention of various scientific disciplines such as biology, physics, chemistry, and engineering. Although nanoparticulate systems are of significant interest in various scientific and technological areas, there is little known about the safety of these nanoscale objects. It has now been established that the surfaces of nanoparticles are immediately covered by biomolecules (e.g. proteins, ions, and enzymes) upon their entrance into a biological medium. This interaction with the biological medium modulates the surface of the nanoparticles, conferring a “biological identity” to their surfaces (referred to as a “corona”), which determines the subsequent cellular/tissue responses. The new interface between the nanoparticles and the biological medium/proteins, called “bio-nano interface,” has been very rarely studied in detail to date, though the interest in this topic is rapidly growing. In this book, the importance of the physiochemical characteristics of nanoparticles for the properties of the protein corona is discussed in detail, followed by comprehensive descriptions of the methods for assessing the protein-nanoparticle interactions. The advantages and limitations of available corona evaluation methods (e.g. spectroscopy methods, mass spectrometry, nuclear magnetic resonance, electron microscopy, X-ray crystallography, and differential centrifugal sedimentation) are examined in detail, followed by a discussion of the possibilities for enhancing the current methods and a call for new techniques. Moreover, the advantages and disadvantages of protein-nanoparticle interaction phenomena are explored and discussed, with a focus on the biological impacts.
LIPIDAT is a convenient compilation of thermodynamic data and bibliographic information on lipids. Over 11,000 records in 15 information fields are provided. The book presents tabulations of all known mesomorphic and polymorphic phase transition types, temperatures, and enthalpies for synthetic and biologically derived lipids in dry, partially hydrated, and fully hydrated states. It also includes the effect of pH, protein, drugs, salt, and metal ion concentration on these thermodynamic values. Methods used in making the measurements and the experimental conditions are reported. Bibliographic information includes a complete literature reference and list of authors. The book will be an indispensable reference for biophysicists, chemical engineers, pharmaceutical and cosmetic researchers, dermatologists, nutritionists, biochemists, physiologists, food scientists, and fats and oils chemists.
This book is designed to be a practical progression of experimental techniques an investigator may follow when embarking on a biochemical project. The protocols may be performed in the order laid out or may be used inde pendently. The aim of the book is to assist a wide range of researchers. from the novice to the frustrated veteran, in the choice and design of experiments that are to be performed to provide answers to specific questions. The manual describes standard techniques that have been shown to work, as well as some newer ones that are beginning to prove important. By following the promi nently numbered steps. you can work your way through any protocol. whether it's a new technique or a task you've done before for which you need a quick review or updated methodology. This manual will assist the experimentalist in designing properly controlled experiments. There will be no advice for dealing with specific pieces of equip ment other than encouragement to read the manual, if you can find it. Through out all manipulations try to be objective. Be on the lookout for unexpected findings. You will learn the most from unexpected results. and they are often the beginning of the next project. It is never possible to record too much in your lab notebook. Do not get discouraged. Remember, things will not always run smoothly.
This volume contains a comprehensive overview of peptide-lipid interactions by leading researchers. The first part covers theoretical concepts, experimental considerations, and thermodynamics. The second part presents new results obtained through site-directed EPR, electron microscopy, NMR, isothermal calorimetry, and fluorescence quenching. The final part covers problems of biological interest, including signal transduction, membrane transport, fusion, and adhesion. Key Features * world-renowned experts * state-of-the-art experimental methods * monolayers, bilayers, biological membranes * theoretical aspects and computer simulations * rafts * synaptic transmission * membrane fusion * signal transduction